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Abstract

The production and consumption of online content have been increasing rapidly,
whereas human attention is a scarce resource. Understanding how the content cap-
tures collective attention has become a challenge of growing importance. In this
thesis, we tackle this challenge from three fronts – quantifying sampling effects of
social media data; measuring engagement behaviors towards online content; and
estimating network effects induced by the recommender systems.

Data sampling is a fundamental problem. To obtain a list of items, one common
method is sampling based on the item prevalence in social media streams. However,
social data is often noisy and incomplete, which may affect the subsequent observa-
tions. For each item, user behaviors can be conceptualized as two steps – the first step
is relevant to the content appeal, measured by the number of clicks; the second step
is relevant to the content quality, measured by the post-clicking metrics, e.g., dwell
time, likes, or comments. We categorize online attention (behaviors) into two classes:
popularity (clicking) and engagement (watching, liking, or commenting). Moreover,
modern platforms use recommender systems to present the users with a tailoring
content display for maximizing satisfaction. The recommendation alters the appeal
of an item by changing its ranking, and consequently impacts its popularity.

Our research is enabled by the data available from the largest video hosting site
YouTube. We use YouTube URLs shared on Twitter as a sampling protocol to obtain
a collection of videos, and we track their prevalence from 2015 to 2019. This method
creates a longitudinal dataset consisting of more than 5 billion tweets. Albeit the
volume is substantial, we find Twitter still subsamples the data. Our dataset covers
about 80% of all tweets with YouTube URLs. We present a comprehensive measure-
ment study of the Twitter sampling effects across different timescales and different
subjects. We find that the volume of missing tweets can be estimated by Twitter rate
limit messages, true entity ranking can be inferred based on sampled observations,
and sampling compromises the quality of network and diffusion models.

Next, we present the first large-scale measurement study of how users collec-
tively engage with YouTube videos. We study the time and percentage of each video
being watched. We propose a duration-calibrated metric, called relative engagement,
which is correlated with recognized notion of content quality, stable over time, and
predictable even before a video’s upload.
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Lastly, we examine the network effects induced by the YouTube recommender
system. We construct the recommendation network for 60,740 music videos from
4,435 professional artists. An edge indicates that the target video is recommended
on the webpage of source video. We discover the popularity bias – videos are dis-
proportionately recommended towards more popular videos. We use the bow-tie
structure to characterize the network and find that the largest strongly connected
component consists of 23.1% of videos while occupying 82.6% of attention. We also
build models to estimate the latent influence between videos and artists. By taking
into account the network structure, we can predict video popularity 9.7% better than
other baselines.

Altogether, we explore the collective consuming patterns of human attention to-
wards online content. Methods and findings from this thesis can be used by content
producers, hosting sites, and online users alike to improve content production, adver-
tising strategies, and recommender systems. We expect our new metrics, methods,
and observations can generalize to other multimedia platforms such as the music
streaming service Spotify.
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Chapter 1

Introduction

Online content has shown a tremendous increase in both content production and
attention consumption. In the era of information overload, while users have an un-
precedented volume of products to choose from, the products in turn compete for
their limited attention [Weng et al., 2012; Zarezade et al., 2017]. It has become in-
creasingly difficult for the users to differentiate a set of valuable information sources,
which also hinders them from allocating attention efficiently.

The inefficient attention allocation can be attributed to two reasons. Firstly, online
content is overwhelmingly presented. For example, more than 500 million tweets are
sent on Twitter every day [twitter.com, 2013] and more than 500 hours of videos are
uploaded on YouTube every minute [tubefilter.com, 2019]. Secondly, the negative
effects of platforms’ proprietary algorithms remain an active matter of debate. For
example, the recommender systems have been criticized for exposing users to a nar-
rower spectrum of content over time, creating a filter bubble phenomenon [Resnick
et al., 2013; Nguyen et al., 2014]. Therefore, understanding how the content captures
human attention is a fundamental step towards building responsible platforms.

Instead of focusing on each individual user, we take an item-centric approach. We
conceptualize the behaviors of consuming a digital product as two steps – the first
step is relevant to the content appeal, measured by the number of clicks or views; the
second step is relevant to the content quality, measured by the post-clicking metrics,
e.g., dwell time, likes, or comments. The two steps characterization was also adopted
in the MIT MusicLab experiment [Salganik et al., 2006; Krumme et al., 2012]. Based
on it, online attention (behaviors) can be categorized into two classes: popularity
(clicking) and engagement (watching, liking, or commenting). Intuitively, the notions
of popularity and engagement respectively describe the decision to click on an item
and the decision to interact after clicking.

In this thesis, we use the largest video hosting platform YouTube as a lens to
study the collective user behaviors. YouTube currently ranks the second in the most-
visited websites [alexa.com, 2020] and attracts over a billion hours watch time every
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day [youbube.com, 2017]. Broadly, online videos account for 73% of internet traffic
in 2016, and they are projected to have 82% of all traffic by 2021 [cisco.com, 2017]. We
tackle three research questions related to attention consumption on YouTube videos
from the perspectives of sampling, engagement, and network effects.

Our first question quantifies the effects of social data sampling on widely-used
attention measures. Data sampling is a common yet fundamental problem in social
media studies [Morstatter et al., 2013; Olteanu et al., 2019]. Most platforms deploy
a request quotation system to avoid malicious attacks. For example, the prevailing
data source Twitter allows 15 to 900 requests every 15 minutes [twitter.com, 2020f],
which is often inadequate to construct a complete, unsampled dataset. The data
sampling introduces noises and biases [Boyd and Crawford, 2012; Tufekci, 2014].
Hence, researchers must be aware and take account of hidden noises in their curated
datasets for drawing rigorous scientific conclusions.

Our second question measures and predicts the collective engagement patterns
towards online content. While there has been a rich body of literature studying
online content, current research extensively focuses on measuring and modeling the
popularity metrics [Pinto et al., 2013; Rizoiu et al., 2017b]. On the other hand, en-
gagement measures, sometimes referred to as “active participation” [Khan, 2017] or
“post-clicking behaviors” [Yi et al., 2014], remain understudied in academia despite
becoming core metrics in practice [youtube.com, 2012; facebook.com, 2017]. Consid-
ering video watch time or webpage dwell time, the audience may immerse in the
content once they click on the item, or quickly abandon it.

Our third question measures and models the network effects induced by the
recommender systems. Many modern platforms provide algorithmic suggestions
to help users explore the enormous content space. Users may first react to exoge-
nous stimuli such as breaking news events and social media promotions [Lehmann
et al., 2012; De Choudhury et al., 2016]. Their attention is then amplified and steered
through the platforms’ recommender systems, creating an endogenous effect [Rizoiu
and Xie, 2017]. On YouTube, despite that the recommender system accounts for
70% watch time [cnet.com, 2018], little is known about how the system drives user
attention and how the induced network affects video popularity.

We show one example for illustrating this discrepancy between popularity and
engagement metrics. Figure 1.1 (a) is the Trump1 inauguration speech video and
Figure 1.1 (b) is one of the most viewed Ice Bucket Challenge2 (IBC) videos. In terms
of the popularity metric, the Trump video has 4.1M views while the IBC video is far
more popular with 31M views. However, the Trump video attracts more engaging

1https://en.wikipedia.org/wiki/Donald Trump
2https://en.wikipedia.org/wiki/Ice Bucket Challenge

https://en.wikipedia.org/wiki/Donald_Trump
https://en.wikipedia.org/wiki/Ice_Bucket_Challenge
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(a)

4.1M views

watch time 7M45S30K shares

time series of daily watch

26K comments
(b)

31M views

watch time 6M28S
5.9K shares

12K comments

time series of daily watch

Figure 1.1: Screenshots of two YouTube videos, their metadata, insight data, and recom-
mended videos. (a) “Trump Inauguration Speech (FULL) | ABC News” (source: https:
//www.youtube.com/watch?v=sRBsJNdK1t0); (b) “Disney Stars Past & Present ALS Ice
Bucket Challenge” (source: https://www.youtube.com/watch?v=TCY0 tP cbk). The screen-
shots were taken in May, 2018. The insight dashboard (highlighted in red box) is deprecated
in current YouTube interface.

behaviors with 26K comments and 30K shares. Additionally, even the Trump video
is 6 minutes shorter than the IBC video, the audience still spend on average 1 more
minute watching it. This example depicts that videos with a higher number of views
do not necessarily lead to more interacting behaviors. It also highlights a significant
challenge that many researchers face – that of choosing an appropriate measure and
understanding the interplay of measures from different dimensions.

On the right-hand panel of each video page, a list of recommended videos is
generated by YouTube recommender systems. From this Trump video, users may
continue to watch the same content from another cable news (1st position), or the
presidential debate between Trump and Clinton (4th position), or Obama’s speech
(5th position). The recommender system effectively provides mechanical pathways
for user attention to flow, and consequently changes the video popularity.

1.1 Thesis overview

This thesis examines the three research questions in greater detail. In Chapter 2, we
present a broad introduction of online attention. We start with the attention theories
derived in economics and cognitive science, and then use a supply and demand

https://www.youtube.com/watch?v=sRBsJNdK1t0
https://www.youtube.com/watch?v=sRBsJNdK1t0
https://www.youtube.com/watch?v=TCY0_tP_cbk
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framework to demonstrate the competition of attention. Next, we review recent
advances in measuring collective behaviors in complex social systems from the fronts
of social data sampling, popularity and engagement measures, and recommender
systems. We are interested in understanding how users reach the content, what they
consume, and how they interact in the information-overloaded world.

In Chapter 3, we address the first research question by presenting a compre-
hensive study of the Twitter sampling effects on common measurements [Wu et al.,
2020]. Because we use Twitter prevalence as a proxy to obtain YouTube videos, it is
crucial to first understand the potential sampling effects on attention measures. By
constructing two sets of complete and sampled tweet datasets on cyberbullying and
YouTube sharing, we show that Twitter rate limit message is an accurate indicator for
the volume of missing tweets, and sampling rates vary across different timescales. We
find the Bernoulli process with a uniform rate can approximate the empirical entity
distribution well. More importantly, the true entity distribution and ranking can be
inferred based on sampled observations. In network measures, we observe that the
structures are altered with denser components more likely to be preserved. Lastly,
sampling compromises the quality of diffusion models since tweet inter-arrival time
is significantly longer in the sampled stream, while user influence is lower.

We curate a longitudinal dataset that tracks tweets containing YouTube URLs
from 2015 to 2019. On average, more than 3M tweets are collected every day. We
extract the associated URLs to acquire YouTube video ids. We develop a new Python
package to crawl YouTube data, and use it to construct two large video datasets,
which are our basis to study the collective user behaviors in online videos.

In Chapter 4, we address the second research question by presenting the first
large-scale measurement study of video engagement on YouTube [Wu et al., 2018]. In
contrast to prior work that requires auxiliary toolkits to record user actions [Buscher
et al., 2009; Arantes et al., 2016], our collection (5.3M videos) raises the data volume
by several orders of magnitude. We study a set of metrics including time and per-
centage of videos being watched. We observe that video duration is an important
covariate on watching patterns. Longer videos generally make the users stay for
a longer time but are less likely to keep them watching till the end. To calibrate
watching metrics against video duration, we construct a 2-dimensional tool, called
engagement map. Based on it, we propose a new metric, called relative engagement,
as the watch percentage rank percentile among videos of similar lengths. This met-
ric is closely correlated with recognized notions of content quality. Moreover, we
find that engagement measures are stable over time and predictable even before a
video’s upload. They have most of the variance explained by video context, topics
and channel information at coefficient of determination R2 of 0.77. Using a Hawkes
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process model to forecast the video attention dynamics, we find the time series of
the engagement metric (daily watch time) is more predictable than that of the popu-
larity metric (daily view count). The result is significant as it separates the concerns
for modeling engagement and popularity – the latter is known to be unpredictable
aprior and driven by external promotions [Kong et al., 2018].

In Chapter 5, we address the third research question by presenting the first large-
scale measurement study on the network effects induced by YouTube recommender
systems [Wu et al., 2019]. We construct the content recommendation network for
60,740 music videos from 4,435 professional artists. An edge indicates that the target
video is recommended on the webpage of source video. Our work is motivated by a
few key observations that the recommender systems drive user attention, especially
when a blockbuster video is uploaded or when a breaking news event arises. By sys-
tematically measuring the entire network, we find that videos are disproportionately
recommended towards more popular videos. This means the recommender system
is likely to take a random viewer to more popular videos and keep them there,
thus reinforcing the “rich get richer” phenomenon. Furthermore, we use the bow-tie
structure [Broder et al., 2000] to characterize the recommendation network. We find
that its core component (23.1% of the videos) occupies most of the attention (82.6%
of the views). This is indicative of the connection between video recommendation
and the inequality of user attention allocation. Finally, we estimate the attention
flow in the video recommendation network. We propose a new model, called AR-
Net, which accounts for the network structure and can predict video popularity 9.7%
better than other baselines. The ARNet model also allows us to identify a group of
artists who gain significant attention from the recommender systems. Furthermore,
we develop a new demo called AttentionFlow [Shin et al., 2021] to visualize the
effects of recommendation for videos and artists in the YouTube network.

Finally, we summarize our work and present a number of interesting future di-
rections in Chapter 6.

1.2 Key contributions and impact

The key contributions of this thesis include new observations, methods, metrics,
datasets, software, and web demonstrations.

• New observations and methods on social data sampling. (1) The volume of miss-
ing tweets can be estimated by rate limit messages. (2) Tweet sampling rates vary
across different timescales. (3) The Bernoulli process approximates the empirical
entity distribution well. (4) Sampling compromises the quality of network and
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diffusion models. (5) A new method to infer true entity statistics (e.g., missing
volume, entity distribution, and ranking) based on sampled observations.

• New metrics and observations on collective engagement patterns. (1) A new
tool called engagement map to capture the nonlinear relationship between video
length and watch patterns. (2) A new metric – relative engagement – that calibrates
against video length, correlates with video quality, and appears stable over time.
(3) Engagement metrics can be predicted in a cold-start setup, achieving R2=0.77.

• New observations and methods on recommendation network effects. (1) The
first large-scale characterization of the video recommendation network intersecting
with video attention consumption. (2) Popularity bias – videos are disproportion-
ately recommended towards more popular videos. (3) A new model called ARNet
that accounts for the network structure to predict video popularity and to estimate
the network contribution between videos and artists.

• Large-scale datasets. We curate and release two YouTube datasets. (1) YouTube

Engagement ’16 dataset contains 5.3M videos published and tweeted between July
and August, 2016. (2) Vevo Music Graph dataset contains 60K music videos with
63 daily snapshots of the video recommendation network. We also release two sets
of Complete/Sampled Retweet Cascades datasets on the topics of cyberbullying
and YouTube sharing.

• Open software. We release two new data collection tools. (1) Twitter-intact-
stream, for reconstructing the complete filtered stream on Twitter; (2) YouTube-
insight, for collecting metadata and historical data for videos on YouTube.

• Web demonstrations. We build two new web demonstrations. (1) HIPie, for ex-
plaining and predicting the popularity of YouTube videos; (2) AttentionFlow,
for visualizing a collection of time series and the dynamic network influence.

Overall, a better understanding of how online content attracts human attention
provides us with a set of useful tools to improve user experience in online platforms.
The observations of the sampling study can help researchers be aware of and mitigate
hidden noises in social media datasets. The observations of the engagement study
can help content producers choose engaging topics to create better products, and help
hosting sites prioritize quality products in recommender systems. The observations
of the network effects study can help content owners understand how traffic is driven
for better promotion strategies, help hosting sites combat social optimization, and
help online users be conscious of the relevance, novelty and diversity trade-offs in
the content they are recommended to.
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Looking forward, the popularity bias in the recommendation network sheds light
on building a responsible online platforms. But we still lack knowledge of how
the recommender systems change a user’s cognition, stance and behavior. Future
research should include a user-centric qualitative study that surveys user cognition
on the effects of recommender systems, and a quantitative study that uses auditing
methods to examine the biases in the recommendation network.



Chapter 2

Related work

The collective user behaviors that we investigate in this thesis have been studied in
multiple disciplines including computer science, sociology, and economics. Firstly,
we provide a brief introduction to online attention in Section 2.1. Next, Section 2.2
details the usage of social media APIs and their sampling effects. Guiding by the two
steps framework, we review work studying the engagement and popularity patterns
in Section 2.3 and Section 2.4, respectively. Lastly, we discuss recommender systems
and their effects on driving user attention in Section 2.5.

2.1 The anatomy of online attention

In psychology, attention is a cognitive process of selectively concentrating on a spe-
cific piece of information [James, 2007]. American economist, Nobel Prize and Turing
Award winner Herbert Simon articulated the concept of attention economy, in which
he pointed out that attention is the limiting factor for information consumption since
human beings cannot digest all the information [Simon, 1971]. In modern society, at-
tention becomes a scarce commodity. Users need to allocate their attention efficiently
to avoid getting lost in a wealth of information.
Competition for finite attention. The attention competition is exacerbated with the
explosive growths of online products and social media content. Whenever a novel
item occurs, it often captures immediate attention. This effectively reduces the at-
tention to other items, leading to inattentional blindness [Chabris and Simons, 2010].
Wu and Huberman [2007] studied the dynamics of collective attention in Digg sto-
ries. They observed a natural time scale over which the attention fades. The dynam-
ics can be described by an exponentially decaying model characterized by a single
novelty factor. Weng et al. [2012] investigated how the competition shapes the spread
of information, especially on content popularity, diversity, and lifetime. Valera and
Gomez-Rodriguez [2015] modeled and illustrated the impact of social influence on
the adoption of competing products.

8
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The attention competition also exists in social networks. First proposed by British
anthropologist Robin Dunbar, the Dunbar’s number suggests the cognitive limit of the
number of people with whom one can maintain stable relationships [Dunbar, 1992].
He found a correlation between primate brain size and average social group size.
The Dunbar’s number for human beings is often perceived around 150. However,
the prevailing usage of social media really boosts the number of relationships one
can possible make. Although initially obtained in an offline experimental setting,
can the Dunbar’s number generalize to online relationships?

Gonçalves et al. [2011] validated the Dunbar’s number on a large Twitter net-
works. They found that the empirical data is in agreement with Dunbar’s result:
users can only maintain a close relationship circle of 100-200 people. On another so-
cial media platform Facebook, Backstrom et al. [2011] analyzed how the users balance
their attention among social contacts. They found that communication-based activ-
ities (e.g, messages and comments) are much more focused with a higher fraction
of attention going towards top contacts, while viewing-based activities (e.g, profile
views and photo views) are significantly more dispersed across contacts.

The above research altogether gives an example of saturated attention economy:
the ability of information consumption is greatly limited by the finite human atten-
tion. This can partly explain many social and economic phenomena, such as “rich
get richer” [Piketty, 2015] and “winner takes all” [Giridharadas, 2019].
Strategies to gain attention. Nowadays, most user-generated content (UGC) sites
have three stakeholders: content consumers, content producers, and hosting plat-
forms. We can use a supply and demand framework to explain their goals. Con-
sumers have the demand of consuming information and the resources (e.g., time,
money) to spend. On the supply end, producers aim at maximizing exposure and
monetization by attracting as many consumers as possible; hosting platforms want
to keep the consumers satisfied by aligning them with the needed products [Konstan
and Riedl, 2012]. Therefore, a surrogate metric of attention is useful and desirable,
since it can serve as a quantifiable signal for the producers to improve their produc-
tions, and for the platforms to improve their services.

For the above three stakeholders, their strategies for gaining attention vary even
though it is intuitive that higher quality products will probably beget more attention.
In this thesis, we focus on the perspectives of content producers and hosting sites.
Shen et al. [2015] investigated product rating on Amazon and found strategic behav-
iors among online reviewers. Their results suggest that reviewers are more likely to
post reviews for popular but less crowded products, and tend to be more conserva-
tive when posting controversial opinions. In terms of the platforms, recommender
systems are widely used to attract users’ long term attention [Chen et al., 2019].
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Popularity interaction
“Which video should I click?”

Popularity metric
31M views

Engagement interaction
“When should I stop watching?”
“Should I share/like/comment?”

Engagement metrics
12K comments

6K shares
avg. watch time 6M28S

Ice Bucket Challenge

Figure 2.1: A YouTube video webpage and user interactions on it. The notions of popularity
and engagement respectively describe the decision to click on a video (right box) and the
decision to interact after clicking (left box). (Screenshot source: https://www.youtube.com/
watch?v=TCY0 tP cbk)

Characterizing online attention. Salganik et al. [2006] explored how social influ-
ence and inherent quality jointly affect a product’s market share in the “MusicLab”
experiment. Content quality only partially determines the product success, while
an increasing strength of social influence increases the unpredictability of success.
Krumme et al. [2012] proposed a two-step framework to characterize how users con-
sume digital items. The first step is based on the product appeal, measured by the
number of clicks; the second step is based on the product quality, measured by post-
clicking metrics, e.g., dwell time, comments, or shares. The appearance of product is
an implementation choice, thus empowering the platforms to manipulate attention
allocations by changing the presentation order of items. [Lerman and Hogg, 2014].

In the web search community, a similar framework has also been adopted to dif-
ferentiate page views from dwell time [Yue et al., 2010]. Stoddard [2015] measured
this framework on two social news aggregators, Reddit and Hacker News. Further-
more, Van Hentenryck et al. [2016] showed popularity alone is a poor proxy to repre-
sent quality in online market. For example, clickbait may attract users’ attention and
receive lots of clicks while failing to provide a positive user experience, suggesting
that popularity and engagement metrics indeed capture different product properties.

Following this idea, we categorize online attention into popularity and engage-
ment. Figure 2.1 illustrates the user interactions and metrics on a YouTube video.
Popularity metric refers to the number of views that a video receives, while en-
gagement metrics refer to the time spent on watching the video, the number of the
comments and external sharing.

https://www.youtube.com/watch?v=TCY0_tP_cbk
https://www.youtube.com/watch?v=TCY0_tP_cbk
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2.2 Social data sampling

We rely on social media APIs to collect data used in this thesis, specifically, Twitter
and YouTube APIs. YouTube API does not subsample the data, yet it requires an
input field of video id. Because we use collected tweets as a proxy to obtain YouTube
video ids, it is crucial to first understand Twitter data sampling.
Twitter APIs. Twitter has different levels of access (Firehose, Gardenhose, Spritzer)
and different ways to access (search API, sampled stream, filtered stream). As the
complete data service (Firehose) incurs excessive costs and requires severe storage
loads, here we only discuss the free APIs.

• Twitter search API returns relevant tweets for a given query, but it only fetches
results published in the past 7 days [twitter.com, 2020d]. The search API also
bears the issue of data attrition. Research using this API to construct a “complete”
dataset would inevitably miss parts of desired tweets [Wang et al., 2015] since tweet
creation and deletion are highly dynamic [Almuhimedi et al., 2013]. To overcome
this limitation, researchers can pivot to the streaming APIs, which return public
tweets at the time of their creation.

• Twitter sampled streaming API returns roughly 1% of all public tweets in real-
time [twitter.com, 2020c]. Pfeffer et al. [2018] detailed its sampling mechanism and
identified potential tampering behaviors. Ghosh et al. [2013] compared the 1%
sampling with expert sampling. They observed that elite users share more trust-
worthy content and react faster to breaking events. González-Bailón et al. [2014]
examined the biases in the retweet network from the 1% sample and the search
API. Some researchers found that the 1% sample can be treated as a representa-
tive sample of all Twitter activities since the hashtag frequencies from 1% sample
largely overlay (within 3 standard deviations) with the bootstrapped random sam-
ples from the complete Firehose stream [Morstatter et al., 2014]. However, it is
worth noting that data filtering can only be conducted after the data is collected.
Therefore, the sampled streaming API is not suitable to create ad hoc datasets, e.g.,
tracking all tweets that contain the hashtag #coronavirus.

• Twitter filtered streaming API collects tweets matching a set of prescribed pred-
icates in realtime [twitter.com, 2020a]. Suppose that the streaming rate is below
Twitter limit, the pre-filtering makes the filtered stream possible to construct the
complete datasets without using the costly Firehose stream, e.g., on social move-
ments [De Choudhury et al., 2016], on news outlets [Mishra et al., 2016], and on
controversial topics [Bista et al., 2019]. We focus on the scenes where the data
streams are sampled. The most relevant work is done by Morstatter et al. [2013],
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in which they compared the filtered stream with the Firehose, and measured the
discrepancies in various metrics.

Another important observation is that Twitter sampling is deterministic. Joseph
et al. [2014] found no practical differences in tweets seen in different streaming
clients, as long as the filtered configurations are the same. Therefore, simply stack-
ing crawlers with the same predicates will not yield more data. However, users
can improve the sample coverage by splitting the keyword set into multiple disjoint
predicate sets, and monitoring each set with a distinct subcrawler. Sampson et al.
[2015] successfully inflated the volume of collected tweets by 10 times through 20
subcrawlers.
Effects of missing social data. The data quality problem has received growing atten-
tion in academic studies. Social data, which records ubiquitous human activities in
digital form, plays a fundamental role in social media research. Boyd and Crawford
[2012] pointed out the necessity to interrogate the assumptions and biases in data.
Ruths and Pfeffer [2014] discussed the biases and flaws in social media data. Tufekci
[2014] outlined five issues on data representativeness and validity. The hidden data
biases may alter some research conclusions and even impact human decision mak-
ing [Olteanu et al., 2019].
Sampling from graphs and cascades. Leskovec and Faloutsos [2006] studied dif-
ferent graph sampling strategies for drawing representative samples. Wagner et al.
[2017] considered how sampling impacts the relative ranking of groups in the at-
tributed graphs. The effects of graph sampling have been extensively discussed by
Kossinets [2006]. In a retweet graph, the missing tweets can cause edge weights to
decrease, and some edges to even disappear. On sampling a cascade, De Choud-
hury et al. [2010] found that combining network topology and contextual attributes
distorts less the observed metrics. Sadikov et al. [2011] proposed a k-tree model to
uncover some properties from the sampled data. They both sampled the cascades
via different techniques (e.g., random, activity-based, forest fire) and varying ratios.

In this thesis, we do not design new sampling mechanism, instead, we study the
sampling effects of Twitter’s proprietary algorithm. Based on a widely-used Reddit
corpus, Gaffney and Matias [2018] identified and suggested strong risks in research
that concerns user history or network information, and moderate risks in research
that uses aggregate counts. We use these qualitative observations as starting points
and conduct a set of in-depth quantitative measurements in Chapter 3. We corrob-
orate the risks in user history study and network analysis and further extend the
scope of measured subjects. Moreover, we use the sampled observations to estimate
the unobserved, complete entity statistics. Our observations are of great importance
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to researchers who use Twitter data for empirical measurement and user modeling.

2.3 User engagement

Many researchers have analyzed user engagement behaviors towards web content.
For example, the line of work that measures webpage reading patterns often exploits
auxiliary toolkits such as mouse-tracking [Arapakis et al., 2014; Lagun and Lalmas,
2016] or eye-tracking [Buscher et al., 2009] instrumented browser. Dwell time, which
is conceptually close to video watch time, has been widely used in the domains
of web search and recommendation to improve retrieval performance [Dupret and
Lalmas, 2013; Lalmas et al., 2015].

In recommender systems, Yi et al. [2014] compared two systems that optimize for
clicks and dwell time, and found the one using dwell time achieves better perfor-
mance on ranking relevant products. On YouTube, both explicit (e.g., rating) and im-
plicit (e.g., watch time) feedback signals are vital for recommending satisfied items to
users [Davidson et al., 2010; Covington et al., 2016]. More recently, YouTube switched
to promote videos that can keep the audience watching for longer time rather than
these optimizing for clicks [youtube.com, 2012]. The same adjustment was also seen
in Facebook videos [facebook.com, 2017].
Individual versus collective measurement. Most of the above research is user-centric
as they study engagement for each individual user. User activity trajectories (e.g.,
search history, watch history) are often assumed available in this approach. This
information is obtained either from internal logs or from crowdsourcing platforms
such as Amazon Mechanical Turk (MTurk).

Figueiredo et al. [2014] asked 72 MTurk users to rate pairs of YouTube videos, and
found that in most evaluations users could not reach consensus on which video is of
better quality. Arantes et al. [2016] monitored a campus network and analyzed how
users interact with video-ad on YouTube. Sun et al. [2017] interviewed a small group
of recruited participants on how they watch a video together. Swart et al. [2020]
surveyed 300 MTurk users to evaluate if advertising banner on YouTube is noticeable.
Survey, interview, field deployment, and diary study are important means of user-
centric studies in human-computer interaction (HCI). However, they are unlikely to
provide quantitative conclusions due to limited data size, typically ranging from a
dozen to several hundred.

Unfortunately, user-level data is generally inaccessible on YouTube, even the con-
tent owners only observe an aggregate analytic report. To this end, researchers can
take an item-centric approach as the aggregate statistics for each item is public and
can be crawled by automated scripts [Yu et al., 2015].
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Dobrian et al. [2011] correlated user engagement on video watching with network
quality, e.g., join time, buffering ratio, rendering quality. Guo et al. [2014] presented a
case study of 4 pre-selected edX courses, where mixed methods were applied – min-
ing edX server logs and interviewing course designer. This approach is infeasible at
the scale of system level and its implications are limited within the area of educa-
tional videos. The most relevant work to this thesis is from Park et al. [2016], who
measured watch time of a small set of YouTube videos, and showed the predictive
power of collective reactions.
Modeling user engagement. Guo and Agichtein [2012] monitored cursor moving
and scrolling to estimate document relevance on webpage. Drutsa et al. [2015] used
gradient boosting decision tree model to predict user browsing behaviors in search
engine. Barbieri et al. [2016] used survival analysis techniques to estimate the distri-
bution of time that users will spend on online advertisements. Dupret and Lalmas
[2013] argued that solely relying dwell time is not enough, the time between two
consecutive user visits, or the absence time, should also be taken into consideration
for modeling engagement.

On online videos, Chen et al. [2013] correlated watch time to video length, type,
and popularity measures. Their model is a simple concatenation of multiple linear
components. Park et al. [2016] showed that watch percentage is positively associated
with the view count, the number of likes per view, and perhaps most surprisingly,
the negative sentiment in the comments. One drawback of these features is that they
require observing videos for some period of time. Yet, a large fraction of videos do
not have comments [Cheng et al., 2008], making this prediction setup inapplicable to
any random YouTube video. Tong et al. [2020] studied video engagement from a neu-
roscience viewpoint. They found that brain activities are informative for predicting
when users stop watching.

Complementary to the studies on engagement behaviors for individual user, our
work in Chapter 4 focuses on measuring and modeling content engagement at the
aggregate level and at large scale. We propose a new metric, called relative engage-
ment, and we find it closely correlates with recognized notion of quality. We also
show that the aggregate engagement is stable throughout a video’s lifetime, and it
can be predicted before the video gathers any view or comment.

2.4 Item popularity

Individual user actions on social media platforms give rise to complex phenomena
at the aggregate level (e.g., spiky, irregular, seasonal popularity). Cha et al. [2007]
are among the first to observe the long-tail distribution of popularity on YouTube, in
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which they explain by the preferential attachment effect. Gill et al. [2007] analyzed
the YouTube network traffic inside the campus of the University of Calgary. They
found that the viewing patterns for videos vary significantly by the time of day and
day of week. Zhou et al. [2010] revealed that internal search and video recommen-
dation are the two most important traffic sources for video popularity. Figueiredo
et al. [2011] characterized the growth patterns of video popularity. In particular, top
videos often get most of the views much earlier in their lifetimes.
Modeling item popularity. Popularity dynamic is the most studied attribute of on-
line products. One line of work aims at predicting the volume of final popularity [Sz-
abo and Huberman, 2010]. On the other hand, many researchers focus on predicting
the shape (e.g., time series) of future popularity [Figueiredo et al., 2016].

A number of models have been proposed to describe it, such as a series of en-
dogenous relaxations [Crane and Sornette, 2008] or multiple power-law phases [Yu
et al., 2015]. Other studies link popularity dynamics to epidemic contagion [Bauck-
hage et al., 2015; Kong et al., 2020b], external stimulation [Yu et al., 2014] or geo-
graphic locality [Brodersen et al., 2012]. We broadly categorize the approaches into
four directions: time series analysis, feature-driven model, point process, and deep
learning.

• Time series analysis is based on the autocorrelation between past observations and
future trend. Szabo and Huberman [2010] showed that early viewing pattern is a
strong predictor for future views and the relation appears to be log-linear. Later,
Pinto et al. [2013] extended the log-linear model to multivariate linear regression
(MLR) to account for the different weights of past observations and a Radial Ba-
sis Functions (RBF) kernel MLR to account for the similarity of popularity growth
patterns with a set of pre-selected video clusters. Instead of predicting numerical
value, Ahmed et al. [2013] discretized popularity into several states and used tran-
sition graph to infer hidden popularity states. Autoregressive Integrated Moving
Average (ARIMA) is one of the most used methods for modeling time series data.
It decouples the trend part and the seasonality part. Gürsun et al. [2011] applied
seasonal ARIMA to predict future view counts on YouTube videos.

• Feature-driven approach falls into the regime of traditional machine learning that
relies on feature engineering. It achieves the trade-off between predictability and
interpretability [Hofman et al., 2017] and often provides instrumental insights.
Studying the sharing behaviors of Facebook posts, Cheng et al. [2014] observed
that temporal and structural features are key predictors of final popularity size. In
contrast, Martin et al. [2016] found that even with unlimited data, the predictive
ability in complex social systems would be bounded below a theoretic, determin-
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istic threshold. Nevertheless, both works point out that past success is the most
predictive feature. On YouTube, Ma et al. [2017] utilized metadata features from
video and its uploader in a regression model to predict lifetime popularity. Abi-
sheva et al. [2014] conducted a cross-platform prediction task that uses the sharing
signals on Twitter to predict the video popularity on YouTube.

• Point processes contain a family of generative models that account for the impacts
from past events, for example, poisson point process, determinantal point pro-
cess, Hawkes process, to name a few. They are often associated with a decaying
kernel (e.g., power-law or exponential) since the interest towards a new event nat-
urally fades away [Wu and Huberman, 2007]. Zhao et al. [2015] proposed a doubly
stochastic poisson process called SEISMIC to model the information diffusion on
Twitter. Mishra et al. [2016] integrated content features into a marked Hawkes self-
exciting point process to estimate content virality, memory decay, and user influ-
ence. Kong et al. [2020a] extended self-exciting processes to dual-mixture processes
for characterizing the resharing cascades of online items. Rizoiu et al. [2017b] used
Hawkes process to explain the complex popularity dynamics of YouTube videos
as two components: exogenous stimuli and endogenous response. For a detailed
introduction of Hawkes process on social media, we refer to the tutorials by Rizoiu
et al. [2017a].

• Deep learning is an active research field. In particular, recurrent neural network
(RNN) with long short-term memory (LSTM) units has achieved state-of-the-art
performances in many time series modeling tasks [Kuznetsov and Mariet, 2019].
Li et al. [2017] proposed an end-to-end deep learning framework to predict cascade
size on Twitter. They found it is critical to learn how the information is diffused
(graph embedding) but not merely who shares the information (node embedding).
Zhu and Laptev [2017] used a Bayesian neural network model for both point and
uncertainty estimation in Uber trip data. Although deep learning techniques may
obtain superior modeling results, the fact that they often fall short of interpretabil-
ity is undesirable in providing practical instructions to the stakeholders.

Our model in Chapter 5 takes a mixed approach – we extract features from both
time series and network. To our knowledge, no prior work has attempted to pre-
dict video popularity with fine-grained content recommendation network due to the
difficulty in constructing such network. Although the regression-based model is rel-
atively simple, we show that once integrating the network structure, it is possible to
beat more sophisticated time series and deep learning models.
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2.5 Content recommendation networks

The goals of recommender systems can be summarized as two related yet distinct
tasks. The first task is user-centric, i.e., given users’ profiles and past activities,
finding a collection of items that might interest them [Konstan and Riedl, 2012]. The
resulting recommendations, often shown in user homepage feed, can be regarded
as the entry point for the user action sequence (also known as a user session). The
second task is item-centric, i.e., given the currently visited item, finding a ranked
list of relevant items [Zhang et al., 2012; Gomez-Uribe and Hunt, 2016]. This can be
regarded as recommending the next item in a sequence of actions.

In the same vein, we conceptualize and explain the behaviors on online platforms
– users start the action sequences by latent interests, and their subsequent actions
are driven by network effects. The items that are connected by the recommender
systems, form a backbone content network of user navigation pathways.
Recommender systems on YouTube. Recommender systems, along with YouTube
search, have been shown as the two dominant factors driving user attention on
YouTube [Zhou et al., 2010]. In 2010, Davidson et al. [2010] reported the usage of
a collaborative filtering method in the YouTube recommender systems, i.e., videos
are recommended by counting the number of co-watches. This approach works well
for videos with many views, however, it is less applicable for newly uploaded videos
or least watched videos. Bendersky et al. [2014] proposed two methods to enhance
the collaborative filtering approach by embedding the video topic representation into
the recommender. Covington et al. [2016] applied deep neural networks and indi-
cated that the final recommendation is a top-K sample from a large candidate set
generated by taking into the account content relevance, past watch and search activ-
ities, etc. Other enhancements include incorporating contextual data [Beutel et al.,
2018]. Chen et al. [2019] and Ie et al. [2019] showed success in applying reinforce-
ment learning techniques in YouTube recommender systems. Most recently, fairness
and responsibility in recommender systems have received significant amount of at-
tention [Wilhelm et al., 2018; Beutel et al., 2019; Yi et al., 2019].

Our work does not deal with designing a recommender system, nor does it at-
tempt to reverse engineer the YouTube recommender. Instead, we concentrate our
analysis on the impacts of the recommender systems by presenting large-scale mea-
surements of the content recommendation network.
Measuring the effects of recommender systems. Contrasting the extensive literature
on evaluating the accuracy of recommendation [Zhang et al., 2012; Lalmas et al., 2015;
Li et al., 2018], we focus on prior work that connects network structure with content
consumption. Gal Oestreicher-Singer and her collaborators have presented a series
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of work on Amazon book recommendation network. Firstly, Oestreicher-Singer and
Sundararajan [2012] demonstrated the demand effects of recommendation networks.
Dhar et al. [2014] further showed the effectiveness of using the recommendation
network in predicting item demands. Lastly, Carmi et al. [2017] reported how the
book sales react to exogenous demand shocks – not only does the sales increase for
the featured item, but the increase also propagates a few hops away by following the
links created by the recommender systems.

Su et al. [2016] linked the aggregate effects of recommendations and network
structure, and found that popular items profit substantially more than the average
ones. However, Sharma et al. [2015] stressed the difficulty of inferring causal relations
based on observational data in recommender systems. Zannettou et al. [2018] inves-
tigated a set of clickbait videos on YouTube. Surprisingly, their analysis suggested
that YouTube recommender fails to take into account the factors of clickbait.

Cheng et al. [2008] are among the first to study the popularity statistics of YouTube
recommender systems. They scraped video webpages to construct the video network
at a weekly interval. Airoldi et al. [2016] followed the video suggestions on YouTube
to construct one static network snapshot for a random collection of music videos.

Note that both studies adopt a snowball sampling technique to construct the
network, whereas in Chapter 5 of this thesis, we have the complete trace of an easily
identifiable group of Vevo artists. The data collection method allows us to find the
less connected group in the network. We capture the dynamics of network snapshots
at a much finer daily granularity. Since presenting an item does not guarantee the
consumption of item, our work is significant as we link the content network with
the attention dynamics. We discover the popularity bias in YouTube recommender
systems – videos are disproportionately recommended to more popular videos. We
also quantify the unequal attention allocation that the largest strongly connected
component (23% of videos) attract 82% of all attention.



Chapter 3

Quantifying sampling effects of
online social data

A comprehensive understanding of data quality is the cornerstone of measurement
studies in social media research. Many researchers rely on public and free applica-
tion programming interfaces provided by the hosting platforms to curate datasets.
However, the process should be taken with caution, since defective data collection
pipelines may introduce noises and potential biases in social data, effectively altering
the observations and conclusions.

In this chapter, we present in-depth measurements on the effects of Twitter data
sampling across different timescales and different subjects (entities, networks, and
cascades). By constructing complete tweet streams, we show that Twitter rate limit
message is an accurate indicator for the volume of missing tweets in Section 3.2.
Sampling also differs significantly across timescales. While the hourly sampling rate
is influenced by the diurnal rhythm in different time zones, the millisecond level
sampling is heavily affected by the implementation choices (Section 3.3). For Twitter
entities such as users, we find the Bernoulli process with a uniform rate approxi-
mates the empirical distributions well. It also allows us to estimate the true ranking
with the observed sample data (Section 3.4). For networks on Twitter, their struc-
tures are altered significantly and some components are more likely to be preserved
(Section 3.5). For retweet cascades, we observe changes in distributions of tweet
inter-arrival time and user influence, which will consequently affect models that rely
on these features (Section 3.6). Altogether, the work in this chapter provides a few
practical tools to measure Twitter sampling effects.

19
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3.1 Introduction

“Polls are just a collection of statistics that reflect what people are thinking in
‘reality’. And reality has a well-known liberal bias.” – Stephen Colbert1

Data quality is a timely topic that receives broad attention. The data noises and
biases particularly affect data-driven studies in social media [Tufekci, 2014; Olteanu
et al., 2019]. Overrepresented or underrepresented data may mislead researchers
to spurious claims [Ruths and Pfeffer, 2014]. For example, opinion polls wrongly
predicted the U.S. presidential election results in 1936 and 1948 because of unrepre-
sentative samples [Mosteller, 1949]. In the era of machine learning, the data biases
can be amplified by the subsequent models. For example, models overly classify
agents doing cooking activity as female due to overrepresented correlations [Zhao
et al., 2017], or lack the capacity to identify dark-skinned women due to underrepre-
sented data [Buolamwini and Gebru, 2018]. Hence, researchers must be aware and
take account of the hidden noises in their datasets for drawing rigorous scientific
conclusions.

Twitter is the most prominent data source in ICWSM – 82 (31%) out of 265 full
papers in the past 5 years (2015-2019) used Twitter data2, in part because Twitter
has relatively open data policies, and in part because Twitter offers a range of pub-
lic application programming interfaces (APIs). Researchers have used Twitter data
as a lens to understand political elections [Bovet and Makse, 2019], social move-
ments [De Choudhury et al., 2016], information diffusion [Zhao et al., 2015], and
many other social phenomena. Twitter offers two streaming APIs for free, namely
sampled stream and filtered stream. The filtered stream tracks a set of keywords,
users, languages, and locations. When the matched tweet volume is above a thresh-
old, Twitter subsamples the stream, which compromises the completeness of the
collected data. In this chapter, we focus on empirically quantifying the data noises
resulted from the sampling in the filtered stream and its impacts on common mea-
surements.

Our work addresses two open questions related to Twitter data sampling. Firstly,
how are the tweets missing in the filtered stream? The sampling mechanism of the
sampled stream has been extensively investigated [Kergl et al., 2014; Pfeffer et al.,
2018], but relatively little is said about the filtered stream. Since the two streaming
APIs are designed to be used in different scenarios, it is pivotal for researchers who
use the filtered stream to understand what, when, and how much data is missing.
Secondly, what are the sampling effects on common measurements? Our work

1At the 2006 White House Correspondents’ Dinner.
2We list the papers and their used Twitter APIs in Section A.1.



§3.1 Introduction 21

is inspired by Morstatter et al. [2013], who measured the discrepancies of topical,
network, and geographic metrics. We extend the measurements to entity frequency,
entity ranking, bipartite graph, retweet network, and retweet cascades. The answers
to these questions not only help researchers shape appropriate questions, but also
help platforms improve their data services.

We address the first question by curating two datasets that track suggested key-
words in previous studies. Without leveraging the costly Twitter Firehose service, we
construct the complete tweet streams by splitting the keywords and languages into
multiple subcrawlers. We study the Twitter rate limit messages. Contradicting obser-
vations made by Sampson et al. [2015], our results show that the rate limit messages
closely approximate the volume of missing data. We also find that sampling rates
have distinct temporal variations across different timescales, especially at the level of
hour and millisecond.

Addressing the second question, we measure the effects of Twitter data sampling
across different subjects, e.g., the entity frequency, entity ranking, user-hashtag bi-
partite graph, retweet network, and retweet cascades. We find that (1) the Bernoulli
process with a uniform rate can approximate the empirical entity distribution well;
(2) the ranks of top entities are distorted; (3) the true entity frequency and ranking
can be inferred based on sampled observations; (4) the network structures change
significantly with some components more likely to be preserved; (5) sampling com-
promises the quality of diffusion models as the distributions of tweet inter-arrival
time and user influence are substantially skewed. We remark that this work only
studies the effects of Twitter sampling mechanism, but does not intend to reverse
engineer it.

The main contributions of this chapter include:

• We show that Twitter rate limit message is an accurate indicator for the volume of
missing tweets.

• A set of measurements on the Twitter sampling effects across different timescales
and different subjects.

• We show how to estimate the entity frequency and ranking of the complete data
using only the sample data.

• We release a software package “Twitter-intact-stream” for constructing the com-
plete data streams on Twitter3.
3The data collection package is available at https://github.com/avalanchesiqi/twitter-intact-stream.

Analysis code and collected data are available at https://github.com/avalanchesiqi/twitter-sampling.

https://github.com/avalanchesiqi/twitter-intact-stream
https://github.com/avalanchesiqi/twitter-sampling
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Cyberbullying YouTube

complete sample complete sample

#collected tweets 114,488,537 60,400,257 53,557,950 49,087,406
#rate limit messages 3,047 1,201,315 3,061 320,751

#estimated missing tweets 42,623 54,175,503 77,055 4,542,397
#estimated total tweets 114,531,160 114,575,760 53,635,005 53,629,803

mean sampling rate 99.96% 52.72% 99.86% 91.53%

Table 3.1: Summary of Cyberbullying and YouTube datasets.

3.2 Datasets and Twitter rate limit messages

Constructing complete Twitter data streams. We collect two datasets, using two sets
of keywords employed in recent large-scale studies that use Twitter. We choose these
works because they are high volume and informative for important social science
problems (cyberbullying [Cheng et al., 2020] and online content sharing). We use
ρ to denote the sampling rate – i.e., the probability that a tweet is present in the
collected (sampled) dataset. We use subscripts to differentiate sampling rates that
vary over time ρt, users ρu, networks ρn, and cascades ρc. The datasets are collected
using the Twitter filtered streaming API and are summarized in Table 3.1.

• Cyberbullying [Nand et al., 2016]: This dataset tracks all tweets that mention
any of the 25 recommended keywords from psychology literature. The keywords
include nerd, gay, loser, freak, emo, whale, pig, fat, wannabe, poser, whore, should,

die, slept, caught, suck, slut, live, afraid, fight, pussy, cunt, kill, dick, bitch. The
collection period is from 2019-10-13 to 2019-10-26.

• YouTube [Rizoiu et al., 2017b]: This dataset tracks all tweets that contain at least
one YouTube video URL by using the rule “youtube OR (youtu AND be)”. The
collection period is from 2019-11-06 to 2019-11-19.

The streaming client is a program that receives streaming data via Twitter API.
The client will be rate limited if the number of matching tweets exceeds a preset
threshold – 50 tweets per second as of May, 2020 [twitter.com, 2020b]. When we use
only one client to track all keywords, we find that both datasets trigger rate limiting.
We refer to the crawling results from a single client as the sample set.
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Id Keywords Languages

1 should en
2 should all\en
3 live en
4 live all\en
5 kill, fight, poser, nerd, freak, pig all
6 dick, suck, gay, loser, whore, cunt all
7 pussy, fat, die, afraid, emo, slut all
8 bitch, wannabe, whale, slept, caught all

complete subcrawler 1-8 all
sample all 25 keywords all

Id #collected tweets #rate limit #est. missing sampling rate

1 29,647,814 1,357 7,324 99.98%
2 801,904 0 0 100.00%
3 16,526,226 1,273 25,976 99.84%
4 7,926,325 233 7,306 99.91%
5 15,449,973 16 108 100.00%
6 13,164,053 15 125 100.00%
7 21,333,866 89 1,118 99.99%
8 14,178,366 64 666 100.00%

complete 114,488,537 3,047 42,623 99.96%
sample 60,400,257 1,201,315 54,175,503 52.72%

Table 3.2: Subcrawler configurations for Cyberbullying dataset. “all” indicates all 66 lan-
guage codes on Twitter, and “all\en” is all languages excluding “en”.

We develop a software package “Twitter-intact-stream” for constructing the com-
plete data streams on Twitter. The package splits the filtering predicates into multiple
subsets, and tracks each set with a distinct streaming client. The Cyberbullying and
YouTube datasets are crawled by 8 and 12 clients based on different combinations
of keywords and languages4. Full specifications for all streaming clients are listed
in Table 3.2 and Table 3.3, respectively. We remove the duplicate tweets and sort the
distinct tweets chronologically. We refer to the crawling results from multiple clients
as the complete set.

In very occasional cases, the complete sets also encounter rate limiting. Estimated
from the rate limit messages (detailed next), 0.04% and 0.14% tweets in the complete
sets are missing, which are negligible comparing to the volumes of missing tweets
in the sample sets (47.28% and 8.47%, respectively). For rigorous comparison, we
obtain a 30 minutes complete sample from Twitter Firehose and find the difference
with our collected data is trivial. Hence, for the rest of this chapter, we treat the
complete sets as if they contain no missing tweets.

4Twitter currently has 66 language codes: en, es, ja, ko, und, ar, pt, de, tl, fr, cs, it, vi, in, tr, pl, ru,
sr, th, el, nl, hi, zh, da, ro, is, no, hu, fi, lv, et, bg, ht, uk, lt, cy, ka, ur, sv, ta, sl, iw, ne, fa, am, te,
km, ckb, hy, eu, bn, si, my, pa, ml, gu, kn, ps, mr, sd, lo, or, bo, ug, dv, ca.



§3.2 Datasets and Twitter rate limit messages 24

Id Keywords Languages

1 youtube en
2 youtube ja
3 youtube ko
4 youtube es
5 youtube und
6 youtube all\{en,ja,ko,es,und}
7 youtu AND be en
8 youtu AND be ja
9 youtu AND be ko

10 youtu AND be es
11 youtu AND be und
12 youtu AND be all\{en,ja,ko,es,und}

complete subcrawler 1-12 all
sample youtube OR (youtu AND be) all

Id #collected tweets #rate limit #est. missing sampling rate

1 10,312,498 323 3,582 99.97%
2 6,620,927 118 3,211 99.95%
3 714,992 36 1,339 99.81%
4 2,106,474 0 0 100.00%
5 1,418,710 0 0 100.00%
6 5,264,150 20 169 100.00%
7 11,188,872 530 10,328 99.91%
8 8,389,060 619 9,657 99.89%
9 4,560,793 1,193 43,584 99.05%

10 2,271,712 27 829 99.96%
11 2,856,415 37 1,556 99.95%
12 7,351,671 158 2,800 99.96%

complete 53,557,950 3,061 77,055 99.86%
sample 49,087,406 320,751 4,542,397 91.53%

Table 3.3: Subcrawler configurations for YouTube dataset.

Validating Twitter rate limit messages. When the streaming rate exceeds the thresh-
old, Twitter API emits a rate limit message that consists of a timestamp and an
integer. The integer is designed to indicate the cumulative number of missing tweets
since the connection starts [twitter.com, 2020e]. Therefore, the difference between 2
consecutive rate limit messages should estimate the missing volume in between.

We empirically validate the rate limit messages. We divide the datasets into a
list of segments where (a) they contain no rate limit message in the complete set; (b)
they are bounded by 2 rate limit messages in the sample set. This yields 1,871 and
253 segments in the Cyberbullying and YouTube datasets, respectively. The lengths
of segments range from a few seconds to several hours, and collectively cover 13.5
days out of the 14-day crawling windows. In this way, we assure that the segments
in the complete set have no tweet missing since no rate limit message is received.
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Figure 3.1: Collected and missing tweets in an 11-second interval. blue circle: collected tweet;
black cross: missing tweet; black vertical line: rate limit message. green number: estimated
missing volume from rate limit messages; black number: count of missing tweets compared
to the complete set.
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Figure 3.2: MAPE of estimating the missing volumes in the rate limit segments.

Consequently, for each segment we can compute the volume of missing tweets in
the sample set by either computing the difference of the two rate limit messages
bordering the segment, or by comparing the collected tweets with the complete set.

Figure 3.1 illustrates the collected and missing tweets in an 11-second interval.
The estimated missing volumes from rate limit messages closely match the counts
of the missing tweets in the complete set. As shown in Figure 3.2, the median error
in estimating the missing volume using rate limit messages is less than 0.0005, mea-
sured by mean absolute percentage error (MAPE). We thus conclude that the rate
limit message is an accurate indicator for the number of missing tweets. Note that it
only approximates the volume of missing tweets, but not the content.

Our observations contradict those from Sampson et al. [2015], who used the same
keyword-splitting approach, yet found that the rate limit messages give inaccurate
estimations. They consistently retrieved more distinct tweets (up to 2 times) than
the estimated total volume, i.e., the number of collected tweets plus the estimated
missing tweets. In contrast, our datasets only have a small deviation (0.08% and
0.13%, comparing the number of collected tweets in the complete set to the number
of estimated total tweets in the sample set in Table 3.1). This discrepancy is due to a
different implementation choice back in 2015 – instead of having 1 rate limit message
for each second, the rate limit messages were spawned across 4 threads, resulting in
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Figure 3.3: (a) The density distribution of milliseconds in the received 55,420 rate limit mes-
sages. (b) The histogram of the number of rate limit messages received in each second. (c)
Scatter plot of rate limit messages. x-axis: timestamp; y-axis: values in the rate limit mes-
sages. (d) Coloring rate limit messages into 4 monotonically increasing threads by using
Algorithm 1. All figures are produced based on the Sampled ’15 dataset.

up to 4 messages per second (detailed next).
A detailed comparison with Sampson et al. [2015] on the rate limit messages. To
understand the contradiction, we investigate a sampled dataset crawled within a
30 minutes interval on Sep 08, 2015 (dubbed Sampled ’15). This dataset contains
66K tweets mentioning YouTube video URLs, and it is also publicly available in our
Github repository. We believe that the design of rate limit messages in Sampled

’15 is the same with that measured in [Sampson et al., 2015]. Differing from the
observations we make in the 2019 Cyberbullying and YouTube datasets, we notice
2 major differences in Sampled ’15 dataset, which imply that the rate limit messages
were implemented differently back in 2015.

Firstly, Sampled ’15 receives up to 4 rate limit messages for each second. Fig-
ure 3.3(a) shows the milliseconds in the rate limit messages are not uniformly dis-
tributed – 89% rate limit messages are emitted between millisecond 700 to 1,000.
With a total of 55,420 rate limit messages, Figure 3.3(b) shows that 0 to 4 rate limit
messages can be received every second. On the contrary, we obtain at most 1 rate
limit message per second in the datasets crawled in 2019. Based on a 5-year tweet
tracking dataset we collect, the change was made on Nov 30, 2018.

Secondly, the integers in the rate limit messages are not increasing monoton-
ically. This contradicts Twitter’s official documentation that “Limit notices contain



§3.2 Datasets and Twitter rate limit messages 27

input : rate limit messages, a list of intergers R = [R1, R2, . . . , Rn].
output: a list of list A = [A1, A2, . . . , An], in which each list Ai is increasing

monotonically.
initialize A1 = [R1] and A = [A1];
while not at Rn do

read the next integer Ri from R;
read the last element of all existing lists [A1, A2, . . . , Aj] from A into a list T;
if Ri ≤ min(T) then

append a new list Aj+1 = [Ri] to A;
else

find the index k between 1 and j, so that Ri has the smallest increment
against T[k];

append integer Ri to list Ak;
end

Algorithm 1: Mapping a list of rate limit messages into multiple monotonically
increasing lists.

a total count of the number of undelivered Tweets since the connection was opened [twit-
ter.com, 2020e]”. Figure 3.3(c) shows the scatter plot of rate limit messages with the
timestamp on the x-axis and the associated integer value on the y-axis. The above
observations prompt us to believe that the rate limit messages (and streaming clients)
are split into 4 parallel threads rather than 1. When the received messages are less
than 4, one explanation could be some threads have streamed all tweets within them.

To estimate the total number of undelivered tweets, we propose Algorithm 1 for
mapping rate limit messages to multiple monotonically increasing lists. Note that
Algorithm 1 is elastic – if the rate limit messages are monotonically increasing, Algo-
rithm 1 will output only one thread. We color the mapping results in Figure 3.3(d),
which shows that 4 separated threads are presented. From the 4,500 rate limit mes-
sages received between 2015-09-08 06:30 UTC and 2015-09-08 09:30 UTC, we estimate
that 85,720 tweets are missing.

We have noticed that Algorithm 1 would fail when the values in one rate limit
thread are constantly smaller than those in another thread. For example, assuming
that we have two interweaved threads A1 = [1, 3, 5, 7] and A2 = [2, 4, 6, 8], the re-
sulting observed rate limit messages could be R = [1, 2, 3, 4, 5, 6, 7, 8]. In this case,
the estimated missing number is 8 while the ground-truth missing number is 15.
In practice, these interweaved threads occur when the streaming span is extremely
short (e.g., the streaming client disconnects and reconnects every few seconds due to
unstable Internet). Nonetheless, the short rate limit message streams mean that the
discrepancy caused by this limitation would not significantly affect our estimation.

To validate the 4-thread counters for rate limit messages, we obtain a complete
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Figure 3.4: Comparing Twitter public filtered stream to the Firehose stream. MAPE is 0.68%
with estimated missing tweet volume from rate limit messages.

data sample from a Twitter data reseller discovertext.com5. This company provides
access to the Firehose service at a cost. We started two streaming clients simulta-
neously on 2017-01-06, one with the Twitter filtered streaming API, the other with
the Firehose. We track the temporal tweet volumes at three levels: (1) public filtered
stream (blue); (2) filtered stream plus the estimated missing volume from rate limit
messages (red); (3) the complete tweet stream from Firehose (grey). The missing
volume is estimated by using Algorithm 1, which maps the integers in rate limit
messages onto 4 parallel counters. As shown in Figure 3.4, the red line and grey
line almost overlap each other (MAPE is 0.68%). The small discrepancy may come
from duplicate tweets, or counter-mismatches. Our experiments show that the 4-
thread counters are accurate measures for the missing tweet volume in early 2017.
Altogether, the collected tweets from public filtered stream plus the estimated miss-
ing tweets are close to both Firehose stream and tweets crawled from multiple sub-
crawlers. This confirms our core assumption that multiple subcrawlers capture the
underlying universe of Twitter Firehose stream.

Sampson et al. [2015] used the 1-thread counter to compute the missing volume,
in which they only considered one fourth of all rate limit messages. This approach
reduces the estimated missing volume to about 25%, and consequently underesti-
mates the total volume. This is the reason Sampson et al. [2015] observed discrep-
ancies when compared the estimated volume from Twitter rate limit messages to the
ground-truth Firehose stream.

Although it is unknown when Twitter will adjust its mechanism for signifying
missing tweets in the future, as long as the total number of missing tweets are pro-
vided as part of a sampled stream, the methodology in this thesis can still be used to
estimate sampling bias in different measurements.

5https://discovertext.com/

https://discovertext.com/
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Figure 3.5: Sampling rates are uneven (a) in different hours or (b) in different millisec-
onds. black line: temporal mean sampling rates; color shades: 95% confidence interval. (c)
Minutely sampling rates. (d) Secondly sampling rates.

3.3 Are tweets missing at random?

In this section, we study the randomness of Twitter sampling – do all tweets share
the same probability of missing? This is relevant because uniform random sampling
creates representative samples. When the sampling is not uniform, the sampled set
may suffer from systematic biases, e.g., some tweets have a higher chance of being
observed. Consequently, some users or hashtags may appear more often than their
cohorts. We tackle the uniformity of the sampling when accounting for the tweet
timestamp, language, and type.
Tweet timestamps. Figure 3.5(a) plots the hourly sampling rates. Cyberbullying

dataset has the highest sampling rate (ρt=78%) at UTC-8. The lowest sampling rate
(ρt=41%) occurs at UTC-15, about half of the highest value. YouTube dataset is al-
most complete (ρt=100%) apart from UTC-8 to UTC-17. The lowest sampling rate
is 76% at UTC-12. We posit that the hourly variation is related to the overall tweet-
ing dynamics and the rate limit threshold (i.e., 50 tweets per second): higher tweet
volumes yield lower sampling rates. Figure 3.5(b) shows the sampling rate at the
millisecond level, which curiously exhibits a periodicity of one second. In Cyber-
bullying dataset, the sampling rate peaks at millisecond 657 (ρt=100%) and drops
monotonically till millisecond 550 (ρt=6%) before bouncing back. YouTube dataset
follows a similar trend with the lowest value (ρt=76%) at millisecond 615. The tem-
poral variations are much less prominent at the minutely and secondly levels, as
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Figure 3.6: Hourly tweet volumes in YouTube dataset. (a) Japanese+Korean; (b) other lan-
guages. black line: temporal mean tweet volumes; color shades: 95% confidence interval.

shown in Figure 3.5 (c,d).
This artifact leaves the sample set vulnerable to automation tools. Users can

deliberately schedule tweet posting time within the high sampling rate period for
inflating their representativeness, or within the low sampling rate period for masking
their content in the public API. In Section 3.4.3, we identify a set of users who may
already exploit the sampling artifact.
Tweet languages. Some languages are mostly used within one particular timezone,
e.g., Japanese and Korean6. The temporal tweet volumes for these languages are re-
lated to the daily activities in the corresponding countries. We break down the hourly
tweet volumes of YouTube dataset into Japanese+Korean and other languages. The
results are shown in Figure 3.6. Altogether, Japanese and Korean account for 31.4%
tweets mentioning YouTube URLs. The temporal variations are visually different –
48.3% of Japanese and Korean tweets are posted in the evening of local time (JST-6pm
to 12am), while tweets in other languages disperse more evenly. Because of the high
volume of tweets in this period, sampling rates within UTC-9 to UTC-15 are lower
(see Figure 3.5a). Consequently, “ja+ko” tweets are less likely to be observed (89.0%
in average, 80.9% between JST-6pm and 12am) than others (92.9% in average).
Tweet types. Twitter allows the creation of 4 types of tweets. The users create a
root tweet when they post new content from their home timelines. The other 3 types
are interactions with existing tweets: retweets (when users click on the “Retweet”
button); quotes (when users click on the “Retweet with comment” button); replies
(when users click on the “Reply” button). The relative ratios of different types of
tweets are distinct for the two datasets (see Table 3.4). Cyberbullying has higher
ratios of retweets, quotes, and replies than YouTube, implying more interactions
among users. However, the ratios of different types are very similar in the sampled
versions of both datasets (max deviation=0.41%, retweets in YouTube dataset). We
conclude that Twitter data sampling is not biased towards any tweet type.

6Japanese Standard Time (JST) and Korean Standard Time (KST) are the same.
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Cyberbullying YouTube

complete sample complete sample

%root tweets 14.28% 14.26% 25.90% 26.19%
%retweets 64.40% 64.80% 62.92% 62.51%

%quotes 7.37% 7.18% 3.44% 3.40%
%replies 13.94% 13.76% 7.74% 7.90%

Table 3.4: The sampling ratios of the 4 tweet types (root tweet, retweet, quote, and reply).

3.4 Impacts on Twitter entities

In this section, we study how the data sampling affects the observed frequency and
relative ranking of Twitter entities, e.g., users, hashtags, and URLs. We first use a
Bernoulli process to model the Twitter data sampling (Section 3.4.1). Next, we show
how the entity statistics for one set (e.g., the complete) can be estimated using the
other set (the sample, Section 3.4.2). Finally, we measure the distortions introduced
in entity ranking by sampling and how to correct them (Section 3.4.3). The analyses
in this section, Section 3.5, and Section 3.6, are done with Cyberbullying dataset
since its sampling effects are more prominent.

3.4.1 Twitter sampling as a Bernoulli process

We examine how well we can use a Bernoulli process to approximate the Twitter
sampling process. Assuming that tweets are sampled identically and independently,
the Twitter sampling can be be seen as a simple Bernoulli process with the mean
sampling rate ρ̄. We empirically validate this assumption by plotting the comple-
mentary cumulative density functions (CCDFs) of user posting frequency (the num-
ber of times a user posts) and hashtag frequency (the number of times a hashtag
appears) in Figure 3.7. The black and blue solid lines respectively show the CCDFs
of the complete and the sample sets, while the black dashed line shows the CCDF in
a synthetic dataset constructed from the complete set using a Bernoulli process with
rate ρ̄=52.72%. Firstly, we observe that the CCDF of the sample set is shifted left,
towards the lower frequency end. Visually, the distributions for the synthetic (black
dashed line) and for the observed sample set (blue solid line) overlap each other. Fur-
thermore, following the practices in [Leskovec and Faloutsos, 2006], we measure the
agreement between these distributions with Kolmogorov-Smirnov D-statistic, which
is defined as

D(G, G′) = maxx{|G(x)− G′(x)|} (3.1)

where G and G′ are the cumulative distribution functions (CDFs) of two distribu-
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Figure 3.7: The frequency distributions of (a) user posting and (b) hashtag. The x-axis starts
at 0 rather than 1, as the sample set and uniform random sample both have missing entities.

tions. With a value between 0 and 1, a smaller D-statistic implies more agreement be-
tween two measured distributions. The results show high agreement between entity
distributions in the synthetic and the observed sample sets (0.0006 for user posting
and 0.002 for hashtag). This suggests that despite the empirical sampling rates not
being unique over time, a Bernoulli process of constant rate can model the observed
entity frequency distribution well7.

3.4.2 Entity frequency

We investigate whether the statistics on one set (complete or sample) can be estimated
using only the statistics of the other set and the Bernoulli process model. We use nc

to denote the frequency in the complete set, and ns the frequency in the sample set
(nc≥ns). More precisely, we ask these three questions: What is the distribution of
ns given nc=k? What is the distribution of nc given ns=k? How many entities are
missing altogether given the distribution of ns?
Modeling sample frequency from the complete set. For a user who posts nc times
in the complete set, their sample frequency under the Bernoulli process follows a
binomial distribution B(nc, ρ̄). Specifically, the probability of observing the user ns

times in the sample set is

Pr(ns|nc, ρ̄) =

(
nc

ns

)
ρ̄ns (1−ρ̄)nc−ns (3.2)

We compute the empirical distribution and binomial distribution for nc from 1
to 100. This covers more than 99% users in our dataset. Figure 3.8(a) shows the
D-statistic between two distributions as a function of complete frequency nc. The bi-
nomial distribution models the empirical data better when nc is smaller. Figure 3.8(b)

7We do not choose the goodness of fit test (e.g., Kolmogorov-Smirnov test) because our sample
sizes are in the order of millions. And trivial effects can be found to be significant with very large
sample sizes. Instead we report the effect sizes (e.g., D-statistic). Alternative distance metrics (e.g.,
Bhattacharyya distance or Hellinger distance) yield qualitatively similar results.
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Figure 3.8: (a) D-statistic between empirical distribution and binomial distribution. (b) The
probability distribution of observing ns tweets in the sample set when a user posts 20 tweets
in the complete set (mean value: 10.54). (c) The probability distribution of ns when nc=100.

illustrates an example when the binomial distribution closely approximates the em-
pirical distribution (nc=20). Their mean sample frequencies (dashed vertical lines)
are the same up to two decimal places (10.54). Figure 3.8(c) shows an example of
nc=100. Although the D-statistic is relatively large, binomial distribution still cap-
tures the general trend of the empirical distribution.
Inferring complete frequency from the sample set. Under the Bernoulli process, for
users who are observed ns times in the sample set, their complete frequencies fol-
lows a negative binomial distribution NB(ns, ρ̄). The negative binomial distribution
models the discrete probability distribution of the number of Bernoulli trials before
a predefined number of successes occurs. In our context, given ns tweets (ns≥1) are
successfully sampled, the probability of having nc tweets in the complete set is

Pr(nc|ns, ρ̄) =

(
nc−1
ns−1

)
ρ̄ns (1−ρ̄)nc−ns (3.3)

We compute the empirical distribution and negative binomial distribution for ns

from 1 to 100. Figure 3.9(a) shows the D-statistic as a function of sample frequency
ns. Negative binomial distributions models the best when the number of observed
tweets is between 9 and 15 (D-statistic<0.02). Figure 3.9(b) shows both distributions
for ns=13, where the minimal D-statistic is reached. The negative binomial distri-
bution closely resembles the empirical distribution. Their estimated mean complete
frequencies are very similar (23.60 vs. 23.72, shown as dashed vertical lines). Fig-
ure 3.9(c) shows an example of ns=100. The approximation is visually more noisy.
This implies that for users who tweet excessively, their user sampling rates may devi-
ate from the mean sampling rate ρ̄=52.72%. This observation motivates us to inves-
tigate the entity rank changes for the most active users post sampling (Section 3.4.3).
Estimating missing volume from the sample set. In data collection pipelines, the
obtained entities from the filtered stream are sometimes used as seeds for the second
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Figure 3.9: (a) D-statistic between empirical distribution and negative binomial distribution.
(b) The probability distribution of posting nc tweets in the complete set when observing a
user posts 13 tweets in the sample set (mean value: 23.60). (c) The probability distribution of
nc when ns=100.

complete sample %missing est. %missing

#users 19,802,506 14,649,558 26.02% 26.12%
#hashtags 1,166,483 880,096 24.55% 24.31%

#URLs 467,941 283,729 39.37% 38.99%

Table 3.5: Empirical and estimated missing rates for entities in Cyberbullying dataset, aver-
age tweet missing rate 1−ρ̄=47.28%.

step crawling, such as constructing user timelines based on user ids [Wang et al.,
2015], or querying YouTube statistics based on video URLs [Wu et al., 2018]. How-
ever, some entities may be completely missing due to Twitter sampling. We thus
ask: can we estimate the total number of missing entities given the entity frequency
distribution of the sample set?

Table 3.5 shows the missing rates for different entities. Compared to the aver-
age tweet missing rate (1−ρ̄=47.28%), the empirical missing rates of entities become
much lower (24.55% to 39.37%) is because entities occurring multiple times are less
likely to be missed. For example, users who tweet 5 times have 95.9% chance of not
being missing. The different missing rates across entities is because the frequency
distributions are different. For example, 30.6% hashtags are tweeted at least 5 times
while 6.4% URLs are tweeted at least 5 times. These rationales also explain why the
entity sampling ratios are higher than the mean sampling rate in Table 3.6.

We formulate the problem of estimating missing entity volume as solving a matrix
equation with constraints. We use the symbol F to denote the entity frequency vector.
F[ns] represents the number of entities that occurs ns times in the sample set. We
want to estimate the frequency vector F̂ of the complete set. For any ns, its sample
frequency F[ns] satisfies
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F[ns] =
∞

∑
k=ns

Pr(ns|k, ρ̄) ∗ F̂[k] (3.4)

Equation (3.4) can be written using either binomial distribution (Equation (3.2))
or negative binomial distribution (Equation (3.3)). We choose binomial distribution
because it fits better on empirical data (comparing Figure 3.8a to Figure 3.9a). We
constrain F̂ to be non-negative numbers and to decrease monotonically since the
frequency distribution is usually heavy-tailed in practice (Figure 3.7). We use the
frequency vector for ns∈[1, 100]. The above matrix equation can be solved as a
constrained optimization task. The constraints force all the frequencies to be non-
negative. For users who post nc times in the complete set, the probability of their
tweets completely missing is Pr(ns=0; nc, ρ̄)=(1−ρ̄)nc . Altogether, the estimated
missing volume is F̂[ns=0] = ∑∞

nc=1 (1−ρ̄)nc F̂[nc] for the whole dataset.
We apply this method to the distributions of users, hashtags and URLs. We show

the estimated missing volume in Table 3.5. The relative errors (MAPE) are smaller
than 0.5% for all entities. This suggests that the volume of missing entities can be
accurately estimated if the frequency distribution of the sample set is observed.
Summary. Although the empirical sample rates have clear temporal variations, we
show that we can use the mean sampling rate to estimate some entity statistics,
including the frequency distribution and the missing volume. This reduces the con-
cerns on assuming the observed data stream is a result of uniform random sam-
pling [Joseph et al., 2014; Morstatter et al., 2014; Pfeffer et al., 2018].

3.4.3 Entity ranking

Entity ranking is important for many social media studies. One of the most common
strategies in data filtering is to keep entities that rank within the top x, e.g., most
active users or most mentioned hashtags [Morstatter et al., 2013; González-Bailón
et al., 2014]. We measure how the Twitter data sampling distorts entity ranking for
the most active users, and whether the ground-truth ranking in the complete set
can be inferred from the sample ranking. Note that in this subsection, we allow the
sampling rates to be time-dependent ρt and user-dependent ρu – as the sampling with
a constant rate would preserve the ranking between the complete and the sample
sets.
Detecting rank distortion. Figure 3.10(a) plots the most active 100 users in the sam-
ple set on the x-axis, and their ranks in the complete set on the y-axis. Each circle is
colored based on the corresponding user sampling rate ρu. The diagonal line indi-
cates uniform random sampling, in which the two sets of ranks should be preserved.
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Figure 3.10: (a) Observed ranks in the sample set (x-axis) vs. true ranks in the com-
plete set (y-axis). (b) Estimated ranks improve the agreement with the ground-truth ranks.
(c) user WeltRadio, observed/true/estimated ranks: 15/50/50. (d) user bensonbersk, ob-
served/true/estimated ranks: 66/42/52. blue/red shades: sample tweet volume; grey
shades: complete tweet volume; black line: estimated tweet volume.

The users above the diagonal line improve their ranks in the sample set, while the
ones below lose their positions.

Figure 3.10(c) highlights a user WeltRadio, who benefits the most from the sam-
pling: it ranks 50th in the complete set, but it is boosted to 15th place in the sample
set. Comparing the complete tweet volume, its volume (4,529) is only 67% relative
to the user who actually ranks 15th in the complete set (6,728, user thirdbrainfx). We
also find that WeltRadio tweets mostly in the very high sampling rate secondly pe-
riod (millisecond 657 to 1,000), resulting in a high user sampling rate (ρu=79.1%).
On the contrary, Figure 3.10(d) shows a user bensonbersk with decreased rank in the
sample set and low sampling rate (ρu=36.5%). Examining his posting pattern, this
user mainly tweets in the low sampling rate hours (UTC-12 to 19).
Estimating true ranking from the sample set. Apart from measuring the rank dis-
tortion between the complete and the sample sets, we investigate the possibility of es-
timating the ground-truth ranks by using the observations from the sample set. From
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complete sample ratio

#tweets with hashtags 24,539,003 13,149,980 53.59%
#users with hashtags 6,964,076 4,758,161 68.32%

avg. hashtags per user 9.23 7.29 78.97%
#hashtags 1,166,483 880,096 75.45%

avg. users per hashtags 55.09 39.40 71.51%

Table 3.6: Statistics of user-hashtag bipartite graph in Cyberbullying dataset. The sampling
ratios (rightmost column) compare the values of the sample set against that of the complete
set. The reason that ratios are higher than mean sampling rate (ρ̄=52.72%) is due to entities
that occur multiple times are more likely to be sampled.

the rate limit messages, we extract the temporal sampling rates that are associated
with different timescales (hour, minute, second, and millisecond), i.e., ρt(h, m, s, ms).
Based on the negative binomial distribution, for a user who we observe ns times at
timestamp κ=(h, m, s, ms), the expected volume is ns/ρt(κ). We compute the esti-
mated tweet volumes for all users and select the most active 100 users. Figure 3.10(b)
shows the estimated ranks on the x-axis and the true ranks on the y-axis. We quantify
the degree of agreement using Kendall’s τ, which computes the difference of concor-
dant and discordant pairs between two ranked lists. With value between 0 and 1, a
larger τ implies more agreement. The Kendall’s τ is improved from 0.7349 to 0.8485
with our estimated ranks. The rank correction is important since it allows researchers
to mitigate the rank distortion without constructing a complete data stream.

3.5 Impacts on networks

In this section, we measure the effects of data sampling on two commonly studied
networks on Twitter: the user-hashtag bipartite graph, and the user-user retweet
network.

3.5.1 User-hashtag bipartite graph

The bipartite graph maps the affiliation between two disjoint sets of entities. No
two entities within the same set are linked. Bipartite graphs have been used in
many social applications, e.g., mining the relation between scholars and published
papers [Newman, 2001], or between artists and concert venues [Arakelyan et al.,
2018]. Here we construct the user-hashtag bipartite graphs for both the complete
and the sample sets. This graph links users to their used hashtags. Each edge has
a weight – the number of tweets between its associated user and hashtag. The basic
statistics for the bipartite graphs are summarized in Table 3.6.
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Clustering techniques are often used to detect communities in such bipartite
graphs. We apply spectral clustering [Stella and Shi, 2003] on the user-hashtag bipar-
tite graph, with the number of clusters set at 6. The resulted clusters are summarized
in Table 3.7, together with the most used 5 hashtags and a manually-assigned cate-
gory. Apart from the cyberbullying keywords, there are significant amount of hash-
tags related to politics, live streaming, and Korean pop culture, which are considered
as some of the most discussed topics on Twitter.

We further quantify how the clusters traverse from the complete set to the sample
set in Figure 3.11. Three complete-set clusters (CC1, CC2, and CC3) are maintained
in the sample-set clusters (respectively mapping to SC1, SC2, and SC3), since more
than half of the entities preserve. The remaining three complete-set clusters disperse.
Investigating the statistics for the complete-set clusters, the preserved ones have a
larger average weighted degree, meaning more tweets between the users and hash-
tags in these clusters. Another notable observation is that albeit the entities (both
users and hashtags) move to the sample-set clusters differently, all complete-set clus-
ters have similar missing rates (28% to 34%, comparing the size of SCs to the size
of CCs). It suggests that Twitter data sampling impacts the community structure.
Denser structures are more resilient to sampling.
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Figure 3.11: The change of clusters from complete set to sample set. Each cell denotes the
volume (top number) and the ratio (bottom percentage) of entities (users and hashtags) that
traverse from a complete cluster to a sample cluster. Clusters are ordered to achieve maximal
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Figure 3.12: Visualization of bow-tie structure in complete set. The black number indicates
the relative size of component in the complete set, blue number indicates the relative size in
the sample set.

3.5.2 User-user retweet network

Retweet network describes the information sharing between users. We build a user-
user retweet network by following the “@RT” relation. Each node is a user, and each
edge is a directed link weighted by the number of retweets between two users. The
user-user retweet network has been extensively investigated in literature [Sadikov
et al., 2011; Morstatter et al., 2013; González-Bailón et al., 2014].

We choose to characterize the retweet network using the bow-tie structure. Ini-
tially proposed to measure the World Wide Web [Broder et al., 2000], the bow-
tie structure was also used to measure the QA community [Zhang et al., 2007] or
YouTube video networks [Wu et al., 2019]. The bow-tie structure characterizes a net-
work into 6 components: (a) the largest strongly connected component (LSCC) as the
central part; (b) the IN component contains nodes pointing to LSCC but not reach-
able from LSCC; (c) the OUT component contains nodes that can be reached by LSCC
but not pointing back to LSCC; (d) the Tubes component connects the IN and OUT
components; (e) the Tendrils component contains nodes pointing from In component
or pointing to OUT component; (f) the Disconnected component includes nodes not
in the above 5 components.

Figure 3.12 visualizes the bow-tie structure of the user-user retweet network,
alongside with the relative size for each component in the complete and sample
sets. The LSCC and IN components, which make up the majority part of the bow-tie,
reduce the most in both absolute size and relative ratio due to sampling. OUT and
Tubes are relatively small in both complete and sample sets. Tendrils and discon-
nected components enlarge 39% and 32% after sampling.

Figure 3.13 shows the node flow of each components from the complete set to the
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Figure 3.13: The change of bow-tie components from complete set to sample set. Each cell
denotes the volume (top) and the ratio (bottom) of users that traverse from a component in
complete set to a component in sample set.

sample set. About a quarter of LSCC component shift to the IN component. For the
OUT, Tubes, Tendrils, and Disconnected components, 20% to 31% nodes move into
the Tendrils component, resulting in a slight increase of absolute size for Tendrils.
Most notably, nodes in the LSCC has a much smaller chance of missing (2.2%, other
components are with 19% to 38% missing rates).

3.6 Impacts on retweet cascades

Information diffusion is perhaps the most studied social phenomenon on Twitter.
A retweet cascade consists of two parts: a root tweet and its subsequent retweets.
A number of models have been proposed for modeling and predicting retweet cas-
cades [Zhao et al., 2015; Mishra et al., 2016; Martin et al., 2016]. However, these
usually make the assumption of observing all the retweets in cascades.

In this section, we analyze the impacts of Twitter sampling on retweet cascades
and identify risks for existing models. We first construct cascades without miss-
ing tweets from the complete set. Next, we measure the sampling effects for some
commonly used features in modeling retweet cascades, e.g., inter-arrival time and
potential reach.
Constructing complete cascades. When using the filtered streaming API, if a root
tweet is observed, the API should return all its retweets. This is because the API
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complete sample ratio

#cascades 3,008,572 1,168,896 38.9%
#cascades (≥50 retweets) 99,952 29,577 29.6%

average retweets per cascade 15.6 11.0 70.2%
median inter-arrival time (s) 22.9 105.7 461.6%

Table 3.8: Statistics of cascades in Cyberbullying dataset, mean sampling rate ρ̄=52.72%.
The numbers of sampled cascades (top 2 rows) are below 52.72% (see text for explanation).
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Figure 3.14: CCDFs of (a) inter-arrival time and (b) relative potential reach.

also tracks the keywords in the retweeted status field of a tweet (i.e., the root tweet),
which allows us to construct a set of complete cascades from the complete set. In
the sample set, both the root tweet and any of its retweets could be missing. If the
root tweet is missing, we miss the entire cascade. If some retweets are missing, we
observe a partial cascade.

Table 3.8 lists the obtained cascades in the complete and the sample sets. Notably,
there are 3M cascades in the complete set, but only 1.17M in the sample set (38.85%),
out of which only 508k (16.88%) cascades are complete and their sizes are relatively
small (max cascade size: 23, mean size: 1.37). Prior literature [Zhao et al., 2015] often
concentrates on retweet cascades with more than 50 retweets. There are 99,952 such
cascades in the complete set, but only 29,577 (29.6%) in the sample set, out of which
none is complete. Assuming the root tweets are sampled independently with mean
sampling rate 52.72%, theoretically at most 52.72% cascades can be observed because
we require the root tweet must be sampled. With additional missing retweets, the
sampling ratio for the cascades will be lower than 52.72%.
Inter-arrival time. One line of work models the information diffusion as point pro-
cesses [Zhao et al., 2015; Mishra et al., 2016]. These models use a memory kernel as
a function of the time gap ∆t between two consecutive events, which is also known
as inter-arrival time. Figure 3.14(a) plots the CCDFs of inter-arrival times in the com-
plete and the sample sets. The distribution shifts right, towards larger values. This is
expected as the missing tweets increase the time gap between two observed tweets.
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The median inter-arrival time is 22.9 seconds in the complete set (black dashed line),
meaning 50% retweets happen within 23 seconds from last retweet. After sampling,
the median increases almost 5-fold to 105.7 seconds (blue dashed line). For research
that uses tweet inter-arrival time, this presents the risk of miss-calibrating models
and of underestimating the virality of the cascades.
Potential reach. Online influence is another well-studied phenomenon on Twitter,
and one of its proxies is the number of followers of a user. We define potential reach
as the total number of all observed retweeters’ followers. This approximates the size
of the potential audience for the root tweet. We compute the relative potential reach
as the ratio of potential reach in the sample cascade against that in the complete
cascade, and we plot the CCDFs in Figure 3.14(b). When observing cascades for as
much as 14 days, 50% of the cascades have the relative potential reach below 0.544.
This indicates that when using the sampled Twitter data, researchers can severely
underestimate the size of the potential audience.

Another common setting is to perform early prediction, i.e., after observing 10
minutes or 1 hour of each retweet cascade. Figure 3.14(b) shows that the relative po-
tential reach is more evenly distribution for shorter time windows – 21.0% cascades
have relative potential reach below 0.25 and 33.7% cascades above 0.75 within 10
minutes span – comparing to the observation over 14 days (5.1% and 11.3%, respec-
tively). Visually, the CCDF of longer horizons is curved and the area around mean
sampling rate is the most dense. This is because the sampling rates across cascades
stabilize around mean sampling rate and have smaller variance when the observation
windows become longer.

3.7 Conclusion

This chapter presents a set of in-depth measurements on the effects of Twitter data
sampling. We validate that Twitter rate limit messages closely approximate the vol-
ume of missing tweets. Across different timescales (hour, minute, second, millisec-
ond), we find that the sampling rates have distinct temporal variations at each scale.
We show the effects of sampling across different subjects (entities, networks, cas-
cades), which may in turn distort the results and interpretations of measurement
and modeling studies. For counting statistics such as number of tweets per user and
per hashtag, we find that the Bernoulli process with a uniform rate is a reasonable ap-
proximation for Twitter data sampling. We also show how to estimate ground-truth
statistics in the complete data by using only the sample data.
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3.7.1 Limitations

These observations in this chapter apply to current Twitter APIs (as of May, 2020)
and are subject to the changes of Twitter’s proprietary sampling mechanisms. We
are aware of that Twitter plans to release a new set of APIs in near future. Consistent
with the current streaming APIs, the rate limit threshold for the new APIs is also set
to 50 tweets per second [twitter.com, 2020b]. Therefore, we believe the observations
of this work will hold.

3.7.2 Practical implications and future work

This work calls attention to the hidden noises and biases in social media data. We
have shown effective methods for estimating ground-truth statistics, which allows
researchers to mitigate the risks in their datasets without collecting the complete
data. Our research provides methods and toolkits for collecting sampled and com-
plete data streams on Twitter. Our findings also provide foundations to many other
research topics using sampled data, such as community detection and information
diffusion algorithms that are robust to data subsampling.

Future works include measuring a larger set of activity and network measure-
ments under data sampling, generalizing the results of this work to other social me-
dia platforms and data formats, and quantifying the robustness of existing network
and diffusion models against data sampling. To establish a benchmark, we release
our collected complete and sampled retweet cascades that contain all required fea-
tures (timestamp and user follower count) of existing diffusion models [Zhao et al.,
2015; Mishra et al., 2016].



Chapter 4

Measuring and predicting
engagement in online videos

In the previous chapter, we extensively discussed the impacts of Twitter data sam-
pling. Since we use Twitter data as a proxy to curate YouTube video datasets, we can
now use the methods in Chapter 3 to measure the sampling effects in our datasets.

In this chapter, we discuss engagement of online videos in detail. Most current
research focuses on modeling video viewership, but we argue that video engage-
ment, or time spent watching is a more appropriate measure for resource allocation
problems in attention, network, and promotion activities.

We present the first large-scale measurement of video-level aggregate engage-
ment on a collection of 5.3 million YouTube videos published over two months in
2016. We study a set of metrics including time and percentage of a video being
watched. In Section 4.3, we propose a new metric, relative engagement, which is cal-
ibrated against video properties and strongly correlated with recognized notions of
quality. Moreover, we find engagement measures of videos stable over time. In Sec-
tion 4.4, we find that aggregate engagement metrics are predictable from a cold-start
setup, having most of their variance explained by video context, topics and channel
information. Channel past success is the most predictive feature while video topics
seem to have a non-trivial effect. In Section 4.5, we link daily watch time to external
sharing of a video using a self-exciting Hawkes Intensity Process, and find that we
can forecast daily watch time more accurately than daily views.

This chapter provides a set of new yardsticks for measuring online content in-
cluding video and other length-constrained media such as songs and podcasts. The
observations here imply several prospective usages of engagement metrics – choos-
ing engaging topics for video production, or promoting engaging videos in recom-
mender systems.

45
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Figure 4.1: Scatter plot of videos from three YouTube channels: Blunt Force Truth (polit-
ical entertainment, blue) circle), KEEMI (cooking vlog, green) triangle), and TheEllenShow

(comedy, red) cross). x-axis: total views in the first 30 days; y-axis: average watch percentage.

4.1 Introduction

Attention is a scarce resource in the modern world. There are many metrics for
measuring attention received by online content, such as page views for webpages,
listen counts for songs, view counts for videos, and the number of impressions for
advertisements. Although these metrics describe the human behavior of choosing one
particular item, they do not describe how users engage with this item [Van Henten-
ryck et al., 2016]. For instance, an audience may become immersed in the interaction
or quickly abandon it – the distinction of which will be clear if we know how much
time the user spent interacting with this given item. Hence, we consider popularity
and engagement as different measures of online behavior.

This chapter studies online videos using publicly available data from the largest
video hosting site YouTube. On YouTube, popularity is characterized as the willing-
ness to click a video, whereas engagement is the watch pattern after clicking. While
most research has focused on modeling popularity [Pinto et al., 2013; Rizoiu et al.,
2017b], engagement of online videos is not well understood, leading to key questions
such as: How to measure video engagement? Does engagement relate to popularity?
Can engagement be predicted? Once understood, engagement metrics will become
relevant targets for recommender systems to rank the most valuable videos.

In Figure 4.1, we plot the number of views against the average percentage watched
for 128 videos in 3 channels. While the entertainment channel Blunt Force Truth has
the least views on average, the audience tend to watch more than 80% of each video.
On the contrary, videos from the cooking vlogger KEEMI have on average 159,508
views, but they are watched only 18%. This example illustrates that videos with a
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high number of views do not necessarily have high watch percentages, and prompts
us to investigate other metrics for describing engagement.

Recent progress in understanding video popularity and the availability of new
datasets allow us to address four open questions about video engagement. Firstly,
on an aggregate level, how to measure engagement? Most engagement literature
focuses on the viewpoint of an individual user, such as recommending relevant prod-
ucts [Covington et al., 2016], tracking mouse gestures [Arapakis et al., 2014] or op-
timizing search results [Drutsa et al., 2015]. Since user-level data is often unavail-
able, defining and measuring average engagement is useful for content producers on
YouTube. Secondly, within the scope of online video, can engagement help mea-
sure content quality? As shown in Figure 4.1, video popularity metric is inadequate
to estimate quality. One early attempt to measure online content quality was taken
by Salganik et al. [2006], who studied music listening behavior in an experimental en-
vironment. For a large number of online contents, measuring quality from empirical
data still remains unexplored. Thirdly, in a cold-start setup, can engagement be pre-
dicted? For engagement, Park et al. [2016] showed the predictive power of collective
user reactions. However, these features require monitoring the system for a period
of time. In contrast, if engagement can be predicted before content is uploaded, it
will provide actionable insights to content producers. Lastly, on forecasting future
performance, how predictable is engagement comparing to popularity? Online
popularity is known to be difficult to forecast [Martin et al., 2016; Hofman et al.,
2017]. Yet, no one has tried to forecast the future trend of watch time, nor compared
the difference of predictability between engagement and popularity.

We address the first question by constructing a new dataset that contains more
than 5 million tweeted YouTube videos and 3 datasets that contain quality videos. We
build two 2-dimensional maps that visualize the internal bias of existing engagement
metrics – average watch time and average watch percentage – against video length.
Building upon that, we derive a novel metric relative engagement, as the duration-
calibrated rank of average watch percentage.

Addressing the second question, we demonstrate that relative engagement is sta-
ble over time, and strongly correlates with established quality measures in Music and
News categories, such as Billboard songs, Vevo artists, and top news channels. It im-
plies that relative engagement can be a target for recommender systems to prioritize
quality videos, and for content producers to create engaging videos.

Addressing the third question, we predict engagement metrics in a cold-start
setting, using only video topical content and channel features. With off-the-shelf
machine learning algorithms, we achieve R2=0.77 for predicting average watch per-
centage. We consider this as a significant result that shows the predictability of
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engagement metrics. Furthermore, we explore the predictive power of video topics
and find some topics are strong indicators for engagement.

Addressing the last question, we adopt a variant of stochastic point processes,
namely Hawkes Intensity Process (HIP) [Rizoiu et al., 2017b]. We model and forecast
both daily watch time and daily views. The forecast error on engagement metric is
4.93 percentile points, better than that of popularity metric (5.43 percentile points).

The main contributions of this chapter include:

• We conduct a large-scale measurement study of engagement on 5.3 million videos
over two-month period, and publicly release 4 new datasets and the engagement
benchmarks1.

• We measure a set of engagement metrics for online videos, including average
watch time, average watch percentage, and a novel metric – relative engagement,
which is calibrated with respect to video length, stable over time, and correlated
with video quality.

• We predict relative engagement and watch percentage from video context, topics,
and channel reputation in a cold-start setting (i.e., before the video gathers any
view or comment), achieving R2=0.45 and 0.77 respectively.

• We explain and forecast daily watch time. The self-exciting HIP model achieves an
average error of 4.93 percentile points.

• We release a software package “YouTube-insight” for collecting metadata and his-
torical data for videos on YouTube.2.

4.2 Data

We curate the YouTube Engagement ’16 datasets that consist of 4 new publicly avail-
able video datasets, as summarized in Table 4.1 and Table 4.2. We also discuss the
Twitter sampling effects on our datasets. We conclude with an introduction of three
daily series available for all videos: shares, views and watch time.

4.2.1 YouTube Engagement ’16 datasets

Tweeted videos dataset contains 5,331,204 videos published between July 1st and
August 31st, 2016 from 1,257,412 channels. The notion of channel on YouTube is

1The code and datasets are available at https://github.com/avalanchesiqi/youtube-engagement.
2The package is available at https://github.com/avalanchesiqi/youtube-insight. However, it is no

longer working as designed since YouTube deprecated the insight endpoint around Nov, 2018.

https://github.com/avalanchesiqi/youtube-engagement
https://github.com/avalanchesiqi/youtube-insight
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Dataset #videos #channels est. #videos est. #channels

Tweeted Videos 5,331,204 1,257,412 5,976,111 1,362,140
Vevo Videos 67,649 8,685 N/A N/A

Billboard Videos 63 47 N/A N/A
Top News Videos 28,685 91 N/A N/A

Table 4.1: Overview of 4 new video datasets. The estimated number of the complete videos
and channels are provided due to Twitter data sampling, see computing methods described
in Section 3.4.2. Video sampling rate is 89.2% for the Tweeted Videos dataset.

category #videos est. #videos category #videos est. #videos

People 1,265,805 1,438,604 Comedy 138,068 153,563
Gaming 1,079,434 1,188,898 Science 110,635 122,448

Entertainment 775,941 867,469 Auto 84,796 96,916
News 459,728 518,365 Travel 65,155 73,739
Music 449,314 502,288 Activism 58,787 66,009
Sports 243,650 272,859 Pets 27,505 31,478

Film 194,891 219,467 Show 1,457 1,599
Howto 192,931 216,245 Movie 158 185

Education 182,849 205,857 Trailer 100 115

Table 4.2: Breakdown of Tweeted Videos by category.

analogous to that of user on other social platforms, since every video is published
by a channel and belonging to one user account. Using Twitter mentions to sample
a collection of YouTube videos has been used in previous works [Yu et al., 2014;
Rizoiu et al., 2017b]. We use the Twitter Streaming API to collect tweets, by tracking
the expression ”youtube” OR (”youtu” AND ”be”). This covers textual mentions of
YouTube, YouTube links and YouTube’s URL shortener (youtu.be). This yields 244
million tweets over the two-month period. In each tweet, we search the extended urls

field and extract the associated YouTube video id. This results in 36 million unique
video ids and over 206 million tweets. For each video, we extract its metadata and
three attention-related dynamics, as described in Section 4.2.3. A non-trivial fraction
(45.82%) of all videos have either been deleted or their statistics are not publicly
available. This leaves a total of 19.5 million usable videos.

We further filter videos based on recency and the level of attention. We remove
videos that are published prior to this two-month period to avoid older videos, since
being tweeted a while after being uploaded may indicate higher engagement. We
also filter out videos that receive less than 100 views within their first 30 days after
upload, which is the same filter used by Brodersen et al. [2012]. Videos that do
not appear on Twitter, or have extremely low number of early views are unlikely
to accumulate a large amount of attention [Pinto et al., 2013; Rizoiu and Xie, 2017],

youtu.be
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therefore, they do not provide enough data to reflect collective watch patterns. Our
proposed measures can still be computed on these removed videos, however the
results might have limited relevance given the low level of user interaction with
them. Table 4.2 shows a detailed category breakdown of Tweeted videos.
Quality videos datasets. We collect three datasets containing videos deemed of high
quality by domain experts, two of which are on Music category and one is on News.
These datasets are used to link engagement and video quality (Section 4.3.4).
• Vevo Videos. Vevo is a multinational video hosting service which syndicates

licensed music clips from three major record companies on YouTube [wikipedia.com,
2020b]. Vevo artists usually come from professional music background, and their
videos are professionally produced. We consider Vevo Videos to be of higher quality
than the average Music videos in the Tweeted Videos dataset. We collect all the
YouTube channels that contain the keyword “Vevo” in the title and a “verified” status
badge on the profile webpage. In total, this dataset contains 8,685 Vevo channels with
67,649 music clips, as of August 31st, 2016.
• Billboard Videos. Billboard acts as a canonical ranking source in the music

industry, aggregating music sales, radio airtime and other popularity metrics into a
yearly Hot 100 music chart. The songs that appear in this chart are usually perceived
as having vast success and being of high quality. We collect 63 videos from 47 artists
based on the 2016 Billboard Hot 100 chart3.
• Top News Videos features a list of top 100 most viewed News channels, as

reported by an external ranking source4. This list includes traditional news broad-
casting companies (e.g., CNN), as well as popular politic talk shows (e.g., The Young

Turks). For each channel, we retrieve its last 500 videos published before Aug 31st,
2016. This dataset contains 91 publicly available News channels and 28,685 videos.

4.2.2 Twitter sampling effects

We apply methods described in Chapter 3 to measure the sampling effects on the
YouTube Engagement ’16 datasets. The overall tweet sampling rate between 2016-
07-01 and 2016-08-31 is 76.67% (230,290,042 collected tweets out of 300,347,371 es-
timated total tweets). Next, we infer the complete number of videos (channels) by
feeding the sampled tweetcount distribution per video (channel) into Equation (3.4).
The estimated volumes are shown in Table 4.1. Additionally, Table 4.2 lists the es-
timated volume for each category. The video sampling rates for different categories
vary between 85.4% and 90.8%.

3https://en.wikipedia.org/wiki/Billboard Year-End Hot 100 singles of 2016
4https://vidstatsx.com/youtube-top-100-most-viewed-news-politics

https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2016
https://vidstatsx.com/youtube-top-100-most-viewed-news-politics
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For the three Quality videos datasets, there is no need to estimate the complete
volume because they are not constructed from collected tweets. Hence, the Twitter
sampling effects do not apply on them.

4.2.3 Video metadata and attention dynamics

For each video, we use the YouTube Data API to retrieve video metadata information
– video id, title, description, upload time, category, duration, definition, channel id,
channel title, and associated Freebase topic ids, which we resolve to entity names
using the latest Freebase data dump5.

We develop a software package “YouTube-insight” to extract three daily series
of video attention dynamics: daily volume of shares, view counts and watch time.
Throughout this chapter, we denote the number of shares and views that a video
receives on the tth day after upload as s[t] and xv[t], respectively. Similarly, xw[t]
is the total amount of time of video being watched on the tth day. Each attention
series is observed for at least 30 days, i.e., t=1, 2, . . . 30. Most prior research on
modeling video popularity dynamics [Szabo and Huberman, 2010; Figueiredo et al.,
2016] studies only view counts. To the best of our knowledge, our work is the first to
perform large-scale measurements on video watch time. The YouTube Engagement

’16 datasets are also one of the two publicly available datasets including information
of video watch time. The other is our Vevo Music Graph dataset (see Section 5.2.1).

4.3 Measures of video engagement

In this section, we measure the interplay between view count, watch time, watch per-
centage and video duration. We first examine their relation in a new visual presenta-
tion – engagement map, then we propose relative engagement, a novel metric to estimate
video engagement (Section 4.3.3). We show that relative engagement calibrates watch
patterns for videos of different lengths, demonstrates correlation to external notions
of video quality (Section 4.3.4), and remains stable over time (Section 4.3.5).

4.3.1 Discrepancy between views and watch time

Figure 4.1 illustrates that watch patterns (e.g., average percentage of video watched)
can be very different for videos with similar views. We examine the union set of
top n videos in Tweeted Videos dataset, respectively ranked by total views and total
watch time at the age of 30 days. For n varying from 100 to 1000, we measure their

5https://developers.google.com/freebase. The Freebase corpus is not updated any more but data
dump is still available.

https://developers.google.com/freebase
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Figure 4.2: (a) Disagreement between the union set of top n most viewed and top n most
watched videos in Tweeted videos at the age of 30 days, measured with Spearman’s ρ. (b-c)
Scatter plots of video ranking in view and in watch at n=100 in Music (ρ=0.80) and News
(ρ=− 0.34).

agreement using Spearman’s ρ. With value between -1 and +1, a positive ρ implies
that as the rank in one variable increases, so does the rank in the other variable. A
ρ of 0 indicates that no correlation exists in these two ranked variables. Figure 4.2(a)
shows that in Tweeted videos, video ranks in total view count and total watch time
correlate at the level of 0.48 when n is 50, but this correlation declines to 0.08 when n
increases to 500 (solid black line). Furthermore, the level of agreement varies across
different video categories: for Music, a video that ranks high in total view count
often ranks high in total watch time (ρ = 0.80 at n = 100, Figure 4.2b); for News, the
two metrics have a weak negative correlation (ρ = −0.34 at n = 100, Figure 4.2c). The
difference results from the varied duration distributions across categories (shown in
the upper panels of Figure 4.4) – Music videos are often from 3 to 5 minutes, while
News videos can be as short as a few seconds (e.g., user-generated clips by phones),
or as long as a few hours (e.g., live streaming reports by news outlets).

This observation suggests that total view count and total watch time provide
different aspects of how audience interact with YouTube videos. One recommender
system optimizing for view count may generate remarkably different results with
one that drives watch time [Yi et al., 2014]. In the next section, we analyze their
interplay to construct more diverse set of measures for video engagement.

4.3.2 New tool – engagement map

For a given video, we compute two aggregate metrics:
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Figure 4.3: Video engagement in the Tweeted videos dataset at the age of 30 days. (a) video
duration D vs. average watch time ω̄30; (b) the engagement map: video duration D vs.
average watch percentage η̄30.

• average watch time ω̄t: the total watch time xw[1 : t] divided by the total view count
xv[1 : t] up to day t

ω̄t =
∑t

i=1 xw[i]
∑t

i=1 xv[i]
(4.1)

• average watch percentage µ̄t: the average watch time ω̄t normalized by video dura-
tion D

µ̄t =
ω̄t

D
(4.2)

ω̄t is a positive number bounded by the video length, whereas µ̄t takes values
between 0 and 1 and represents the average percentage of video watched.

We observe that video duration is an important covariate on watch percentage. In
the Tweeted videos dataset, duration alone explains more than 58% of the variance
of watch percentage. Intuitively, longer videos are less likely to be fully watched
compared to shorter videos due to the limited human attention span.

We construct two 2-dimensional maps, where the x-axis shows video duration D,
and the y-axis shows average watch time ω̄30 (Figure 4.3a) and average watch per-
centage µ̄30 (Figure 4.3b) over the first 30 days. We project all videos in the Tweeted

videos dataset onto both maps. The x-axis is split into 1,000 equally wide bins in log
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scale. We choose 1,000 bins to trade-off enough data in each bin and having enough
bins. We have also tried discretizing to smaller or larger number of bins, but the
results are visually similar. We merge bins containing a very low number of videos
(<50) to nearby bins. Overall, each bin contains between 50 and 38,508 videos. The
color shades correspond to data percentiles inside each bin: the darkest color cor-
responds to the median value and the lightest correspond to the extremes (0% and
100%). Both maps calibrate watch time and watch percentage against video duration:
highly-watched videos are positioned towards the top of allocated bin, while barely-
watched videos are at the bottom compared to other videos with similar length.

Those two maps are logically identical because the position of each video in Fig-
ure 4.3(b) can be obtained by normalizing with its duration in Figure 4.3(a). It is
worth noticing that a linear trend exists between average watch time and video du-
ration in the log-log space, with an increasing variance as duration grows. In this
work, we predominantly use the map of watch percentage (Figure 4.3b) given its
y-axis is bounded between [0,1], making it easier to interpret. We denote this map as
the engagement map.

Note that our method of constructing the engagement map resembles the idea of
non-parametric quantile regression, which essentially computes a quantile regression
fit in an equally spaced span [Koenker and Hallock, 2001]. For smaller datasets, using
quantile regression may result in a smoother mapping. We tried quantile regression
on Tweeted videos dataset, and we found that the values on both tails are inaccurate
as the polynomial fits do not accurately reflect nonlinear trends. In contrast, our
binning method works better in this case. Finally, we remarks that the engagement
map can be constructed at different ages, which allows us to study the temporal
evolution of engagement (Section 4.3.1).

4.3.3 New metric – relative engagement

Based on the engagement map, we propose the relative engagement η̄t ∈ [0, 1], de-
fined as the rank percentile of video in its duration bin. This is an average engage-
ment measure in the first t days. Figure 4.3(b) illustrates the relation between video
duration D, watch percentage µ̄30, and relative engagement η̄30 for three example
videos. Video v1 (d 8ao3o5ohU) shows kids doing karate and v2 (akuyBBIbOso) is
about teaching toddlers colors. They are both about 5 minutes, but have different
watch percentages, µ̄30(v1)= 0.70 and µ̄30(v2)=0.21. These amount to very differ-
ent values of the relative engagement: η̄30(v1)=0.96, while η̄30(v2)=0.07. Video v3

(WH7llf2vaKQ) is a much longer video (D=3 hours 49 minutes) showing a live fight-
ing show. It has a relatively low watch percentage (µ̄30(v3)=0.19), similar to v2. How-
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ever, its relative engagement η̄30(v3) amounts to 0.99, positioning it among the most
engaging videos in its peer group.

We denote the mapping from watch percentage µ̄t to relative engagement η̄t as
f , and its inverse mapping as f−1. Here f is implemented as a length 1,000 look
up table with a maximum resolution of 0.1% (or 1,000 ranking bins). For a given
video with duration D, we first map it to corresponding bin on the engagement
map, then return the engagement percentile by watch percentage. Equation (4.3)
describes the mapping between relative engagement and average watch percentage
using engagement map.

η̄t = f (µ̄t, D)⇔ µ̄t = f−1(η̄t, D) (4.3)

While researchers have observed that watch percentage is affected by video du-
ration [Guo et al., 2014; Park et al., 2016], to the best of our knowledge, this work is
the first to quantitatively map its non-linear relation with video duration and present
measurements in a large-scale dataset.

We choose day 30 to construct the engagement map and compute relative en-
gagement because we need a reasonably long window for the watching statistics to
stabilize. Theoretically, one can pick any duration to compute such metrics but the
results will have larger variance. In fact, we vary the time window to compute η7 to
η30 for investigating the temporal dynamics of relative engagement in Section 4.3.5.

4.3.4 Linking relative engagement and video quality

Recent studies show that the quality of a digital item is linked to the audience’s
decision to continue watching or listening after first opening it [Salganik et al., 2006;
Krumme et al., 2012]. Therefore, the average amount of time that the audience spend
on watching a video should be indicative of video quality.

We examine the relation between relative engagement and video quality. We place
the Quality videos datasets (Section 4.3.4) on the engagement map. Figure 4.4(a)
plots the engagement map of all Music videos in the Tweeted Videos (blue), that
of the Vevo Videos (red), and the videos in the Billboard videos as a scatter plot
(black dots). Similarly, Figure 4.4(b) plots the engagement map of all News videos in
the Tweeted Videos in blue and that of the Top News Videos in red. All the maps
are built from observations in the first 30 days.

Visibly, the Quality Videos are skewed towards higher relative engagement val-
ues in both figures. Most notably, 44 videos in the Billboard Videos dataset (70%
of the dataset) possess a high relative engagement of over 0.9. The other 30% of
videos have an average η̄30 of 0.83 with a minimum of 0.54. For Quality videos, the
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Figure 4.4: Relative engagement and video quality for Music (a) and News (b). Videos in
Quality videos dataset are shifted towards higher relative engagement compared to that in
Tweeted videos. Best viewed in colors.

1-dimensional density distribution of average watch percentage µ̄30 also shifts to the
upper end as shown on the right margin of Figure 4.4. Overall, relative engagement
values are high for content judged to be high quality by experts and the community.
Thus, relative engagement is one plausible surrogate metric for content quality.
Relative engagement within channel. Figure 4.5 shows the engagement mapping
results of 25 videos within one channel (PBABowling). This channel uploads sports
videos about Professional Bowlers Association with widely varying lengths – from
2-minute player highlights to 1-hour event broadcasts. Video length has a signifi-

Figure 4.5: Watch percentage µ̄30 (left) and relative engagement η̄30 (right) for videos in
channel PBABowling. While it appears that µ̄30 has a linear relation with the logarithmic
duration log10 D, η̄30 can be reasonably explained by only using the mean value of η̄30.
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Figure 4.6: Relative engagement is stable over time. (a) CDF of temporal change in relative
engagement of day 7 vs. day 14 (blue), day 7 vs. day 30 (red). (b) Fitting error of power-law
model (blue), linear regressor (red) and constant function (green) in Tweeted videos.

cant impact: the short video cluster has mean average watch percentage µ̄30 of 0.82,
whereas the long video cluster has mean µ̄30 of 0.21. However, after mapping to
relative engagement, those two clusters have mean η̄30 of 0.92 and 0.78 – much more
consistent within this channel than measured by watch percentage. Overall, the mean
relative engagement of channel PBABowling is 0.86, which suggests this channel is
likely to produce more engaging videos than an average YouTube channel, regardless
of the video length. This example illustrates that video relative engagement tends
to be stable within the same channel, and sheds some light on using past videos to
predict future relative engagement.

4.3.5 Temporal dynamics of relative engagement

How does engagement change over time? This question is important because pop-
ularity dynamics tend to be bursty and hard to predict [Yang and Leskovec, 2011;
Matsubara et al., 2012]. If engagement dynamics can be shown to be stable, it is
useful for content producers to understand watch patterns from early observation.
Note that the method for constructing the engagement map is the same, but one can
use data at different ages t to build different mapping function f (µ̄t, D).
Engagement metrics are stable over time. We examine the temporal change of rela-
tive engagement at two given days t1 and t2 (t1<t2) in Tweeted videos. We denote
the cumulative distribution function (CDF) as Fx(∆η̄), where x=η̄t2−η̄t1 . This com-
putes the fraction of videos with relative engagement changing less than ∆η̄ during
t1 to t2. Figure 4.6(a) shows ∆η̄ distribution of day 7 vs day 14 and day 7 vs day 30.
There are 4.6% of videos that increase more than 0.1 and 2.7% that decrease more
than 0.1, yielding 92.7% of the videos with an absolute relative engagement change
of less than 0.1 between day 7 and day 30. Such a small change results from the fact
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Figure 4.7: Temporal view series (blue) and smoothed daily relative engagement (black
dashed) fitted by generalized power-law model atb + c (red).

that relative engagement η̄t is defined as average measure over the past t days. It
suggests that future relative engagement can be predicted from early watch patterns
within a small margin of error. Similarly, this observation extends to both average
watch percentage µ̄t and average watch time ω̄t.

Next, we examine relative engagement on a daily basis. To avoid days with
zero views, we use a 7-day sliding window, i.e., changing the summations in Equa-
tion (4.1) to between t−6 and t, yielding a smoothed daily watch percentage µ̄t−6:t =

∑t
i=t−6 xw[i]

D ∑t
i=t−6 xv[i]

. We then convert µ̄t−6:t to smoothed daily relative engagement η̄t−6:t via
the corresponding engagement map. For t<7, we calculate relative engagement from
all prior days before t.

Figure 4.7 shows the daily views and smoothed relative engagement over the first
30 days of two example videos. While the view series has multiple spikes (blue), rel-
ative engagement is stable with only a slightly positive trend for video XIB8Z hASOs
and a slightly negative trend for hxUh6dS5Q Q (black dashed). View dynamics have
been shown to be affected by external sharing behavior [Rizoiu and Xie, 2017], the
stability of relative engagement can be explained by the fact that it measures the
average watch pattern but not how many people view the video.
Fitting relative engagement dynamics. We examine the stability of engagement met-
rics across the entire Tweeted Videos dataset. If the engagement dynamics can be
modeled by a parametric function, one can forecast future engagement from initial
observations. To explore what best describes the gradual change of relative engage-
ment η̄t, we examine 3 functions: generalized power-law model (atb + c), linear re-
gressor (wt + b), and constant (c) function. For videos in Tweeted videos, we fit each
of the three functions to smoothed daily relative engagement series η̄t−6:t over the
first 30 days. Figure 4.6(b) shows that power-law function fits best on the dynamics
of relative engagement, with an average mean absolute error of 0.033.

To sum up, we observe that engagement metrics (relative engagement, watch per-
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centage, and watch time) are stable throughout a video’s lifetime, which implies that
early watching patterns are strong predictors for future engagement and makes them
attractive prediction targets. It is desirable to predict them in a cold-start setting, i.e.,
before videos get uploaded or any viewing behavior is observed.

4.4 Predicting aggregate engagement

In this section, we predict relative engagement and average watch percentage of a
video in a cold-start setting. We further analyze the importance of each video feature
on predicting engagement metrics.

4.4.1 Experimental setup

Prediction targets. We setup two regression tasks to predict average watch per-
centage µ̄30 and relative engagement η̄30. Watch percentage is intuitively useful for
content producers, while relative engagement is designed to calibrate watch percent-
age against duration as detailed in Section 4.3.3. It is interesting to see whether such
calibration changes prediction performance. We report three evaluation results: pre-
dicting relative engagement and watch percentage directly, and predicting relative
engagement then mapping to watch percentage via engagement map by using Equa-
tion (4.3). We do not predict average watch time because it can be deterministically
computed by multiplying watch percentage and video duration.
Training and test data. We split Tweeted videos at 5:1 ratio over publish time.
We use the first 51 days (2016-07-01 to 2016-08-20) for training, containing 4,455,339
videos from 1,132,933 channels; and the last 11 days for testing (2016-08-21 to 2016-
08-31), containing 875,865 videos from 366,311 channels. 242,017 (66%) channels in
the test set have appeared in training set, however, none of the videos in the test set
is in the training set. The engagement map between watch percentage and relative
engagement is built on the training set over the first 30 days. We split the dataset in
time to ensure that learning is on past videos and prediction is on future videos.
Evaluation metrics. Performance is measured with two metrics:

• Mean Absolute Error MAE = 1
N ∑N

i=1 |yi − ŷi|

• Coefficient of Determination R2 = 1− ∑N
i=1(yi−ŷi)

2

∑N
i=1(yi−ȳ)2

Here y is the true value, ŷ the predicted value, ȳ the average; i indexes samples in the
test set. MAE is a standard metric for average error. R2 quantifies the proportion of
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Control variable (D)
Duration Logarithm of duration in seconds

Context features (C)
Definition Binary, high definition or not
Category One hot encoding of 18 categories
Language One hot encoding of 55 languages

Freebase topic features (T)
Freebase topics One hot sparse representation of 405K topics

Channel reputation features (R)
Activity level Mean number of daily upload
Past engagement Mean, std and five points summary of previously up-

loaded videos

Channel specific predictor (CSP)
One predictor for each channel using available features

Table 4.3: Overview of features for predicting engagement.

the variance in the dependent variable that is predictable from the independent vari-
able [Allen, 1997], and is often used to compare different prediction problems [Martin
et al., 2016]. A lower MAE is better whereas a higher R2 is better.

4.4.2 Features

We describe each YouTube video with 4 types of features as summarized in Table 4.3.
Control variable. Because video duration is the primary source of variation for
engagement (Figure 4.3), we use duration as a control variable and include it in all
predictors. In Tweeted Videos dataset, durations vary from 1 second to 24 hours,
with a mean value of 12 minutes and median of 5 minutes. We take the logarithm
(base 10) of duration to account for the skewness.
Context features. Context features are provided by video uploader. They describe
basic video properties and production quality [Hessel et al., 2017].

• Definition: “1” represents high definition (720p or 1080p) and ”0” represents low
definition (480p, 360p, 240p or 144p). High definition yields better perceptual
quality and encourages engagement [Dobrian et al., 2011].

• Category: broad content identifications assigned by video producers, the full list is
shown in Table 4.2. Here we encode it as an 18-dimensional one-hot vector.

• Language: we run langdetect package on the video description and choose the
most likely language. langdetect implements a Naive Bayes classifier to detect
55 languages with high precision [Shuyo, 2010]. The language is indicative of
audience demographics.
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Freebase topics features. YouTube labels videos with Freebase entities [Bollacker
et al., 2008]. These labels incorporate user engagement signals, video metadata and
content analysis, and are built upon a large amount of data and computational re-
sources. With the recent advances in computer vision and natural language process-
ing, there may exist more accurate methods for annotating videos. However, one can
not easily build such an annotator at scale, and finding the best video annotation
technique is beyond the scope of this work. On average, each video in the Tweeted

Videos dataset has 6.16 topics. Overall, there are 405K topics and 98K of them appear
more than 6 times. These topics vary from broad categories (Song), to specific object
(Game of Thrones), celebrities (Adele), real-world events (2012 Seattle International Film
Festival) and many more. Such fine-grained topics are descriptive of video content.
While learning embedding vectors can help predict engagement [Covington et al.,
2016], using raw Freebase topics enables us to interpret the effect of individual topic
(Section 4.4.4).
Channel reputation features. Prior research shows that user features are predictive
for product popularity [Martin et al., 2016; Mishra et al., 2016]. Here we compute
feature from a channel’s history to represent its reputation. We could not use social
status indicators such as the number of subscribers, because it is a time-varying
quantity and the value when a video is uploaded can not be retrospectively obtained.
Thus, we compute two proxies for describing channel features.

• Activity level: mean number of daily published videos by channels in the training
data. Intuitively, channels with higher upload rates reflect better productivity.

• Past engagement: relative engagement of previously uploaded videos from the same
channel in the training set. Here we compute mean, standard deviation and five
points summary: median, 25th and 75th percentile, min and max.

Several features used in prior works are interesting, but they do not apply in our
setting. Network traffic measurement [Dobrian et al., 2011] requires access to the
hosting backend. Audience reactions such as likes and comments [Park et al., 2016]
can not be obtained before a video’s upload.

4.4.3 Methods

We use linear regression with L2-regularization to predict engagement metrics, η̄30

and µ̄30, both lie between 0 and 1. Since the dimensionality of Freebase topics features
is high (4M x 405K), we convert the feature matrix to a sparse representation, allow-
ing the predictor to be trained on one workstation. We adopt a fall-back strategy to
deal with missing features. For instance, we use the context predictor for videos for
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Figure 4.8: Summary of engagement prediction with two metrics, MAE: lower is better;
R2: higher is better. (a): Performance for predicting η̄30 in different feature combinations.
(b): Performance for predicting µ̄30 in different feature combinations, directly (solid bars,
left) or via relative engagement η̄30 (shaded bars, right). Predicting watch percentage via
converting relative engagement performs better than predicting watch percentage directly in
all predictors.

which the channel reputation features are unavailable. The fall-back setting usually
results in a lower prediction performance, however, it allows to predict engagement
for any video. We have also tried KNN regression and support vector regression, but
they do not yield better performances. All the models are implemented using the
Scikit-learn Python package.
Channel specific predictor (CSP). In addition to the shared predictor, we train a
separate predictor for each channel that has at least 5 videos in the training set.
This fine-grained predictor covers 61.4% videos in the test data and may capture the
“on-topic” effect within channel [Martin et al., 2016]. Intuitively, a channel might
have specialty on certain topics and videos about those attract the audience to watch
longer. For the remaining 38.6% videos, we use the shared linear regressor with all
available features.

4.4.4 Results and analysis

Figure 4.8(a) bottom summarizes the results of predicting the relative engagement
η̄30. Context (C) and Freebase topics (T) alone are weak predictors, explaining 0.04
and 0.19 variance of η̄30 in the test set. Combining the two (C+T) yields a slight
gain over Freebase topics. Channel reputation (R) is the strongest feature, achieving
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Figure 4.9: Shared linear regressors with channel reputation features on channel PBABowl-

ing, for predicting µ̄30 (blue dashed) and predicting η̄30 then mapping to µ̄30 (red solid).

R2=0.42, and is slightly improved by adding context and Freebase topics. Channel-
specific predictor (CSP) performs similarly to the All-feature predictor (All), sug-
gesting that one can use a shared predictor to achieve similar performance with
finer-grained per-channel model for this task. The analysis using MAE (Figure 4.8a
top) also illustrates the same observations.

Average watch percentage µ̄30 is easier to predict, achieving R2 up to 0.69 (Fig-
ure 4.8b bottom) by using all features. Interestingly, predicting η̄30 then mapping
to µ̄30 consistently outperforms direct prediction of µ̄30, achieving R2 of 0.77. This
shows that removing the influence of video duration via engagement map is benefi-
cial for predicting engagement.

To understand why predicting via η̄30 performs better, we examine the shared
linear regressors in both tasks. For simplicity, we include video duration and chan-
nel reputation features as covariates, and exclude the (generally much weaker) con-
text and Freebase topics features for this example. In Figure 4.9, we visualize the
two shared channel reputation predictors (R) at different video lengths for channel
PBABowling (also shown in Figure 4.5): one predicts µ̄30 directly (blue dashed), and
the other predicts η̄30, then maps to µ̄30 via the engagement map (red solid). The
engagement map captures the non-linear effect for both short and long videos. In
contrast, predicting µ̄30 directly does not capture the bimodal duration distribution
here: it overestimates for longer videos and underestimates for shorter videos.
Analysis of failed cases. We investigate the causes of failed prediction for each pre-
dictor. The availability of channel information seems important – for most poorly
predicted videos, their channels have only one or two videos in the training set.
Moreover, some topics appear more difficult to predict than others. For example,
videos that are labeled with music obtain a MAE score of 0.175 (η̄30 using the All-
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feature predictor). This amounts to an error increase of 28% compared to videos
labeled with obama (MAE=0.136). Lastly, the prediction performance varies consider-
ably even for videos from the same channel and identically labeled. For example, the
channel Smyth Radio (id: UC79quCUqSgHyAY9Kwt1V6mg) released a series of videos
about “United States presidential election”, 8 of which are in our dataset: 6 are in
the training set and 2 are in the test set. These videos have similar lengths (3 hours)
and they are produced in a similar style. The 6 videos in training set are watched
on average between 3 and 10 minutes, yielding a η̄30 of 0.08. However, the 2 videos
in the test set achieve considerable attention – 1.5 hours watch time on average, pro-
jecting η̄30 at 1.0. One possible explanation is that the videos in the test set discuss
conspiracy theories and explicitly lists them in the title.

Overall, engagement metrics are predictable from context, topics and channel
information in a cold-start experiment setting. Although channel reputation informa-
tion is the strongest predictor, Freebase topics features are also somewhat predictive.

4.4.5 Are Freebase topics informative?

In this section, we analyze the Freebase topics features in detail and provide action-
able insights for producing videos. Firstly, we group videos by Freebase topic and
extract the most frequent 500 topics. Next we measure the amount of information
gain with respect to relative engagement conditional entropy, defined in following
equation:

H(Y|Xi=1) = − ∑
y∈Y

P(y|xi=1) log2 P(y|xi=1) (4.4)

Each topic is represented as a binary variable xi∈{0, 1}, for i=1, . . . , 500. We
divide relative engagement into 20 bins, and y is the discretized bin. A lower con-
ditional entropy indicates the presence of current topic is informative for engage-
ment prediction (either higher or lower). Here we calculate H(Y|X = 1) rather than
H(Y|X), because X = 0 represents the majority of videos for most topics and the cor-
responding term will dominate. Using H(Y|X = 1) quantifies its effect only when
the topic is in presence [Sedhain et al., 2013]. Figure 4.10 is a scatter plot of topic size
and conditional entropy. Here large topics such as book (3.2M videos) or music (842K
videos) have high conditional entropy and mean relative engagement close to 0.5,
which suggests they are not informative in predicting engagement. All informative
topics (e.g., with conditional entropy 4.0 and lower) are relative small (e.g., appearing
around 10K times in the training set).

Figure 4.10 (inset) plots two example topics that are very informative on engage-
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Figure 4.10: Informativeness for the most frequent 500 Freebase topics, measured by condi-
tional entropy.

ment, from which we observe that videos about bollywood are more likely to have a
low relative engagement while topic obama tends to keep audience watching longer.
However, not all small topics are informative. A counter-example is baseball, which
has a small topic size but a high condition entropy value.

In summary, watch percentage and relative engagement are predictable in a cold-
start setting, before any behavioral data is collected. A few content-based semantic
topics are predictive of low- or high- engagement. Such observation can help content
producers choose engaging topics in video production.

4.5 Forecasting temporal engagement

While average engagement metrics are relatively stable over time, the amount of
views and watch time fluctuate from day to day. In this section, we leverage the
state of the art method on forecasting YouTube video viewership – Hawkes Intensity
Process [Rizoiu et al., 2017b] – to forecast the time series of daily watch time.

4.5.1 Experimental setup

Forecasting targets. The daily watch time of a video, denoted as xw[t], is a time
series with no regular shape. It can go through multiple long-term rising and falling
phases [Yu et al., 2015], or have noisy short-term fluctuations from day to day [Mat-
subara et al., 2012]. Figure 4.11 illustrates the daily watch time of 2 videos (in hours,
dashed black line). Albeit complicated, watch time is reported to be the central
metric in YouTube recommender system [youtube.com, 2012; Covington et al., 2016].
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Figure 4.11: HIP fitting and forecasting for music video X0ZEt GZfkA and 3jL-1c5t5T0.

Our target is to forecast the future values of xw[t], given the observed watch time
series in the past. To contrast the predictability, we also replicate the original task of
forecasting video daily views, denoted as xv[t].
Dataset and splitting. We obtain the released Active videos ’14 dataset from [Ri-
zoiu et al., 2017b], and further enhance it with the watch time information with our
software “YouTube-insight”. This dataset contains 13,738 YouTube videos that are
uploaded in 2014 and are tweeted at least 100 times within 120 days of their onsets.
For the data construction details, we refer to the original paper [Rizoiu et al., 2017b].

We adopt the same data splitting strategy: we use the first 90 days of each video’s
viewing, watching, and sharing history to estimate model parameters. The learned
parameters are later used to forecast future values of xv[t] and xw[t] between day 91
and day 120.
Evaluation metric. We use the absolute percentile error (APE) to measure forecasting
results. APE compares the percentile difference of true value ∑120

t=91 x[t] and predicted
value ∑120

t=91 x̂[t]. This metric effectively computes the ranking position change of each
video against the entire dataset in terms of predicted targets. A lower APE indicates
better forecasting performance.

4.5.2 Methods - Hawkes Intensity Process (HIP)

It is notable that temporal attention metrics (popularity and engagement) are highly
unpredictable [Cheng et al., 2014; Martin et al., 2016] because the external social
environment may change suddenly. One encouraging recent result from Rizoiu et al.
[2017b] shows the contrary. Their key insights are:

1. Attention metrics are responses to promotions in the external world. It will be-
come more predictable once the promotions are accounted for.
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2. Content quality and other scaling factors can be estimated from a modest amount
of attention history.

We use these insights, and adopt their proposed Hawkes Intensity Process (HIP) to
model daily views and watch time on YouTube.

HIP extends the well-known Hawkes (self-exciting) process [Hawkes, 1971] to
describe the volume of activities within a fixed time interval (e.g. daily). This is
done by taking expectations over the stochastic event history. Specifically, this model
describes a self-exciting phenomenon that is commonly observed in online social net-
work [Zhao et al., 2015; Mishra et al., 2016; Rizoiu and Xie, 2017]. It models the target
quantity x[t] as a self-consistent equation into three parts: the unobserved external
influence, the effects of external promotions, and the influence from historical events.
Formally, it can be written as

x[t] = γ1[t = 0] + η1[t > 0] + αs[t] + C
t

∑
τ=1

x[t− τ](τ + c)−(1+θ) (4.5)

The first two terms represent unobserved external influences. γ and η model
the strengths of an initial impulse and a constant background rate, respectively. in
the middle component, α is the sensitivity to external promotion, s[t] is the volume
of promotion, and αs(t) is the instantaneous response to promotion. In the last
component, θ is the exponent of a power-law memory kernel (τ + c)−(1+θ). c is a
nuisance parameter for keeping the kernel bounded, and C accounts for the latent
content quality. Overall, this last component models the impact over its own event
history x[τ] for τ=1 : t−1.

In our case, x[t] is the time series of daily views xv[t] or daily watch time xw[t]
(in hours). s[t] is the daily number of shares (as tracked by YouTube). The parameter
set {γ, η, α, C, c, θ} is estimated from the first 90-day interval of each video using the
constrained L-BFGS algorithm in SciPy Python package.
Baseline. Another widely used method for volume forecasting is Multivariate Linear
Regression (MLR) [Szabo and Huberman, 2010; Pinto et al., 2013], i.e., estimating a
weighted linear combination of historical volumes of attention and promotion on a
set of training videos, and then applying the learned weights to new videos.

x[t] = wt−1x[1 : t− 1] + wt
ss[1 : t] (4.6)

Here x[t] is the prediction target on day t; x[1 : t−1] is historical signals from
day 1 to day t−1; s[1:t] is the sharing (promotions) series on the item; wt−1 and wt

s

are weights estimated from training data. The MLR is a stronger baseline than other
linear models such as auto-regressive moving average (ARMA), since the size of the
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Figure 4.12: Forecasting errors of HIP and MLR on daily views (hollow) and watch time
(solid) using historical attention and sharing dynamics.

moving window in MLR is the entire available history.

4.5.3 Results and analysis

We report results on the Active videos ’14 dataset [Rizoiu et al., 2017b]. Using
this dataset allows us to contrast the tasks of forecasting daily views and watch
time. For both HIP and MLR, we estimate model parameters over the first 90 days
and perform forecasting between day 91 and day 120. HIP is estimated using both
attention history and sharing series, while MLR forecasts future value with historical
data only, or with additional sharing information.

Our forecasting errors are shown in Figure 4.12, measured with APE. We observe
that HIP consistently outperforms MLR in forecasting daily watch time (and views,
reproducing earlier results in [Rizoiu et al., 2017b]). Moreover, the watching signal
(engagement metric) seems more predictable than the viewing signal (popularity
metric). The best HIP model of forecasting watch time (APE=4.92%) is better than
that of forecasting daily views (APE=5.42%).

One possible explanation for this discrepancy can be attributed to the robustness
of engagement metric. As users may be enticed by clickbait snippet, the amount of
views is naturally more fluctuated than the watch time. Once users click on a video,
they will quickly exit if they realize the content is inconsistent with the title, or spend
more time watching if they perceive the video is of high quality. The inherent quality
effectively plays a role in calibrating the amount of attention each video receives.
However, the calibration only applies to watch time, but not view count.
HIP-view vs. HIP-watch. Two key quantities derived from the HIP model are the
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viral score α and the viral potential ν. The viral score α quantifies the degree of in-
stantaneous response to external promotions. Figure 4.11 contains two videos with
results of fitting and forecasting from both HIP (magenta) and MLR (green). The
latino music video (X0ZEt GZfkA) has a lower viral score than a Vevo video by Ricky
Martin (3jL-1c5t5T0). This suggests that the latino music video needs more promo-
tions to attract a similar amount of attention when compared to the Vevo video.
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Figure 4.13: Correlation plots of viral rank (0–100 percentile) of HIP-view (x-axis) versus HIP-
watch (y-axis). (a)-(d): number of videos, average video duration, average watch percentage
and average watch time.

The viral potential ν quantifies how much attention will be gained for each im-
pulse received. Here we introduce a nuanced concept impulse, denoted as ξ̂[t]. For
each share, it will generate α impulses. The viral potential ν is computed as a nu-
meric integration of response to a unit of impulse from 0 to 10,000 time steps. At



§4.6 Conclusion 70

each time step, ξ̂[t] accounts for all past impulses ξ̂[t− τ] over the power-law kernel.

ξ̂[0] = 1; ξ̂[t] = C
T

∑
τ=1

ξ̂[t− τ](τ + c)−(1+θ) for t ≥ 1;

ν =
10000

∑
t=0

ξ̂[t]

(4.7)

We compare viral potential ν from the HIP models on views and on watch time,
by looking at correlation matrices after rank-normalizing their respective values of
ν, dubbed viral rank. Figure 4.13(a) shows that the viral ranks of HIP-view and
HIP-watch highly correlate with each other – 50.4% of videos are in the same 20-
percentile bucket in both models (summing over the secondary diagonal), and the
ranks of another 36.2% differ by one.

For each cell in Figure 4.13(a), we examine some video-level properties – duration,
watch percentage, and average watch time. We visualize the results in Figure 4.13(b-
d). The number within each cell denotes the mean value of the property for videos
in corresponding cell. Videos with a high viral rank in watch but low rank in views
(top left buckets) tend to have longer length (Figure 4.13b) and longer watch time
(Figure 4.13c), whereas those with a low viral rank in watch but high rank in views
(bottom right buckets) tend to have a very high watch percentage (generally >0.90,
see Figure 4.13d).

In summary, self-exciting model can describe the attention dynamics of YouTube
videos well. The task of forecasting future watch time is relatively easy compared
with forecasting future view counts. The HIP model is a useful tool to quantity the
gained attention given a known volume of social promotion, or identify videos that
have the potential to become viral.

4.6 Conclusion

In this chapter, we measure a set of aggregate engagement metrics for online videos,
including average watch time, average watch percentage, and a new metric, relative
engagement. We study the proposed metrics on a public dataset of 5.3 million videos.
We show that relative engagement is stable over the video lifetime, and is strongly
correlated with established notions of video quality. We further predict the average
watch percentage, and forecast the volume of future watch time. We find that average
engagement metrics are quite predictable, even in a cold-start setting. Although
forecasting future attention dynamics is difficult, we find the series of watch time is
more predictable than view count.
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4.6.1 Limitations

Our observations are only on publicly available videos. It is possible that untweeted,
private, and unlisted videos behave differently. The attention data used are aggre-
gated over all viewers of a video. Therefore, our observations here are more limited
than those from content hosting sites, which have access to individual user attributes
and behavior logs. Our results are item-centric and cannot directly translate to user-
centric engagement study.

4.6.2 Practical implications and future work

The observations in this work provide content producers with a new set of tools
to create engaging videos and forecast user behavior. For video hosting sites, en-
gagement metrics can be used to optimize recommender systems and advertising
strategies, as well as to detect potential clickbaits. For future work, one open prob-
lem is to quantify the gap between aggregate and individual measurements. Another
is to extract more sophisticated features and to apply more advance techniques for
improving the prediction and forecasting performance.



Chapter 5

Measuring and modeling online
recommendation networks

Chapter 4 examined the engagement patterns of online videos at the aggregate level.
In this chapter, we shift our focus to the popularity measure and its interplay with
the recommender systems. At present, most video hosting sites implement recom-
mender systems, which connect the videos into a directed network and build path-
ways for users to navigate from one video to another. However, little is known about
how the collective human attention is allocated over such large-scale networks, and
about the impacts of the recommender systems on driving overall traffic.

In Section 5.2, we construct the Vevo network – a YouTube video network with
60,740 music videos interconnected by the recommendation links, and we collect
their associated viewing dynamics. This results in a total of 310 million views every
day over a period of 9 weeks. From Section 5.3 to Section 5.5, we present a set of
measurements from the macroscopic, microscopic, and temporal perspectives. These
measurements connect the structure of the recommendation network and the video
attention dynamics. We use the bow-tie structure to characterize the Vevo network
and we find that its core component (23.1% of the videos), which occupies most of the
attention (82.6% of the views), is made out of videos that are mainly recommended
among themselves. This is indicative of the links between video recommendation
and the inequality of attention allocation. In Section 5.6, we address the task of
estimating the attention flow in the video recommendation network. We propose a
model that accounts for the network effects for predicting video popularity, and we
show it consistently outperforms the baselines. This model also identifies a group of
artists gaining attention because of the recommendation network.

Altogether, the observations and models in this chapter provide a new set of
tools to better understand the impacts of recommender systems on collective social
attention.

72
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5.1 Introduction

Many online platforms present algorithmic suggestions to help users explore the
enormous content space. The recommender systems, which produce such sugges-
tions, are central to modern online platforms. They have been employed in many
applications, such as finding new friends on Twitter [Su et al., 2016], discovering
interesting communities on LinkedIn [Sharma and Yan, 2013], and recommending
similar goods on Amazon [Oestreicher-Singer and Sundararajan, 2012; Dhar et al.,
2014]. In the domain of multimedia, service providers (e.g., YouTube, Netflix, and
Spotify) use recommender systems to suggest related videos or songs [Davidson
et al., 2010; Covington et al., 2016; Gomez-Uribe and Hunt, 2016; Zhang et al., 2012;
Celma and Cano, 2008], and to generate non-stop media playlist [Bendersky et al.,
2014; Chen et al., 2019]. Much effort has been on generating more accurate recom-
mendations, but relatively little is said about the effects of recommender systems
on overall attention, such as their effects on item popularity ranking, the estimated
strength of item-to-item links, and global patterns on the attention gained due to
being recommended. This chapter aims to answer such questions for online videos,
using publicly available recommendation networks and attention time series.

Consistent with Chapter 4, we use the term attention to refer to a broad range of
user activities with respect to an online item, such as clicking, commenting, sharing,
or watching. In contrast, the term popularity is used to denote observed attention
statistics that are often used to rank online items against each other. Our measure-
ment and estimation are carried out on the largest online video platform YouTube,
and we specifically quantify popularity using the number of daily views for each
video. Note that though the validation in this chapter is limited to popularity, our
outlined methods may well apply to other deeper forms of user engagement such as
watch time.

We illustrate the goals of this chapter through an example. Figure 5.1(a) shows
the recommendation network for six videos from the artist Adele1. It is a directed
network and the directions imply how users can navigate between videos by follow-
ing the recommendation links. Some videos are not directly connected but reachable
within a few hops. For example, “Skyfall” is not on the recommended list of “Hello”,
but a user can visit “Skyfall” from “Hello” by first visiting “Rolling in the deep”. Fig-
ure 5.1(b) plots the daily view series since the upload of each of the six videos. When
“Hello” was released, it broke the YouTube debut records by attracting 28M views
in the first 24 hours2. Simultaneously, we observe a traffic spike in all of her other

1https://en.wikipedia.org/wiki/Adele
2https://www.billboard.com/articles/news/6745062/adele-hello-biggest-youtube-debut-this-year

https://en.wikipedia.org/wiki/Adele
https://www.billboard.com/articles/news/6745062/adele-hello-biggest-youtube-debut-this-year
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Figure 5.1: Observing the effects of recommendation network on video popularity. (a) A
directed network consists of six videos by the artist Adele. The node size is proportional to
the video’s cumulative view counts till Nov 02, 2018. The red arrow highlights one possible
route that users visit “Skyfall” from “Hello” in 2 hops. (b) View series for the six videos
shown in (a). x-axis is calendar year. Visually we observe a simultaneous spike across all
videos when “Hello” was uploaded on Oct 22, 2015, denoted by red dashed vertical line.

videos, even in three videos that were not directly pointed by “Hello”. This exam-
ple illustrates that the viewing dynamics of videos connected directly or indirectly
through recommendation links may correlate, and it prompts us to investigate the
patterns of attention flowing between them.

In this chapter, we bridge two gaps in the current literature. The first gap mea-
sures and estimates the effects of recommender systems in complex social systems.
The main goal of recommender systems is maximizing the chance that a user clicks
on an item in the next step [Davidson et al., 2010; Covington et al., 2016; Bender-
sky et al., 2014; Yi et al., 2014] or in a longer time horizon [Beutel et al., 2018; Chen
et al., 2019; Ie et al., 2019]. However, recommendation in social systems remains as
an open problem for two reasons: (1) a limited conceptual understanding of how
finite human attention is allocated over the network of content, in which some items
gain popularity at the expense of, or with the assistance of others; (2) the computa-
tional challenge of jointly recommending a large collection of items. The second gap
comes from a lack of fine-grained measurements on the attention captured by items
structured as a network. There are recent measurements on the YouTube recommen-
dation networks [Airoldi et al., 2016; Cheng et al., 2008], but their measurements are
not connected to the attention patterns on content. Similarly, measurement studies
on YouTube popularity [Zhou et al., 2010] quantify the overall volume of views di-
rected from recommended links. However, no measurement that accounts for both
the network structure and the attention flow is available for online videos.

This chapter tackles three research questions:
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1. How to measure video recommendation network from public information?

2. What are the characteristics of the video recommendation network?

3. Can we estimate the attention flow in the video recommendation network?

We address the first question by curating a new YouTube dataset consisting of
a large set of Vevo artists. This is the first dataset that records both the temporal
network snapshots of a recommender system, and the attention dynamics for items
in it. Our observation window lasts 9 weeks. We present two means to construct the
non-personalized recommendation network, and we discuss the relation between
them in detail (Section 5.2).

Addressing the second question, we conceptualize the global structure of the
network as a bow-tie [Broder et al., 2000] and we find that the largest strongly con-
nected component accounts for 23.11% of the videos while occupying 82.6% of the
attention. Surprisingly, videos with high indegree are mostly songs with sustained
interests, but not the latest released songs with high view counts. We further find
that the network structure is temporally consistent on the macroscopic level, how-
ever, there is a significant link turnover on the microscopic level. For example, 50%
of the videos with an indegree of 100 on a particular day will gain or lose at least 10
links on the next day, and 25% links appear only once during our 9-week observation
window (Section 5.3 to Section 5.5).

Answering the third question, we build a model which employs both the temporal
and network features to predict video popularity, and we estimate the amount of
views flowing over each link. Our networked model consistently outperforms the
autoregressive and neural network baseline methods. For an average video in our
dataset, we estimate that 31.4% of its views are contributed by the recommendation
network. We also find the evidence of YouTube recommender system boosting the
popularity of some niche artists (Section 5.6).

The new methods and observations in this chapter can be used by content owners,
hosting sites, and online users alike. For content owners, the understanding of how
much traffic is driven among their own content or from/to other content can lead to
better production and promotion strategies. For hosting sites, such understanding
can help avoid social optimization, and shed light on building a fair and transparent
content recommender systems. For online users, understanding how human atten-
tion is shaped by the algorithmic recommendation can help them be conscious of the
relevance, novelty and diversity trade-offs in the content they are recommended to.

The main contributions of this chapter include:
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• We curate a new YouTube dataset, called Vevo Music Graph dataset3, which con-
tains the daily snapshots of the video recommendation network over a span of 9
weeks, and the associated daily view series for each video since upload.

• We perform, to our knowledge, the first large-scale measurement study that con-
nects the structure of the recommendation network with video attention dynamics.

• We propose an effective model that accounts for the network structure to predict
video popularity and to estimate the attention flow over each recommendation
link.

5.2 Data

In this section, we first introduce our newly curated Vevo Music Graph dataset
(Section 5.2.1). Next, we detail the data collection strategy (Section 5.2.2) and ana-
lyze the relation between two types of non-personalized video recommendation lists
(Section 5.2.3).

5.2.1 Vevo Music Graph dataset

The Vevo Music Graph dataset consists of the verified Vevo artists who are active in
six English-speaking countries (United States, United Kingdom, Canada, Australia,
New Zealand, and Ireland), together with their complete record of videos uploaded
on YouTube from the launch of Vevo (Dec 8, 2009) until Aug 31, 2018. Our dataset
contains 4,435 Vevo artists and 60,740 music videos. For each video, we collect its
metadata (e.g., title, description, uploader), its view count time series, and its rec-
ommendation relations with other videos. The videos and their recommendation
relations form a dynamic directed network, which we capture daily between Sep 1,
2018 and Nov 2, 2018 (63 days, 9 weeks).
Why Vevo? Vevo4 is the largest syndication hub that provides licensed music videos
from major record companies to YouTube [Wikipedia.com, 2020b]. We choose to
study the networked attention flow on Vevo for several reasons. First, Vevo is an
ecosystem of its own that attracts tremendous attention — 94 of all-time top 100
most viewed videos on YouTube are music, and 64 of which are distributed via
Vevo [wikipedia.com, 2020a]. On average, our dataset accounts for 310 millions views
and 9.1 millions watch hours every day. Second, many users utilize YouTube as their

3The code and datasets are available at https://github.com/avalanchesiqi/networked-popularity
4The Vevo website was shut down on May 24, 2018. However, videos syndicated on YouTube before

are still embedded with a “VEVO” watermark on their thumbnails. See screenshot in Figure 5.2 for
illustration.

https://github.com/avalanchesiqi/networked-popularity
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music streaming player, listening to non-stop playlists generated by the recommender
systems. After the completion of the current video, YouTube automatically plays the
“Up next” video – the video in the first position of the recommended list, as illus-
trated in Figure 5.2. This usage pattern for music videos makes the network effects
of YouTube recommender systems more significant for directing user attention from
one video to another. Third, Vevo artists and their videos form a tightly connected
network. The average degree in the Vevo video network is 10, compared to 3.2 in
the YouTube video network collected by Airoldi et al. [2016] via snowball sampling
(see Section 5.2.3). The nodes are homogeneous in terms of content – they are all mu-
sic videos from artists based in English-speaking countries. Lastly, the Vevo artists
are easily identifiable – they include the keyword “VEVO” in the channel title, they
possess a verification badge on the channel page, and they publish licensed videos
with a “VEVO” watermark.

5.2.2 Data collection strategy

We identify Vevo artists starting from Twitter. We capture every tweet that men-
tions YouTube videos by feeding the rule “youtube” OR (“youtu” AND “be”) into
the Twitter Streaming API [twitter.com, 2020a]. Our Twitter crawler has been run-
ning continuously since Jun 2014. From the “extended urls” field of each tweet, we
extract the associated YouTube video ID, and we use our open-source tool “YouTube-
insight” [Wu et al., 2018] to retrieve the video’s metadata, daily view count series and
the ranked list of relevant videos. Next, we select the Vevo artists by keeping only
the channels that have the keyword “VEVO” in the channel title and a “verified”
status badge on the channel homepage. Note that a channel refers to a user who up-
loads videos on YouTube. We query an open music database MusicBrainz5 to retrieve
more features about each artist, such as the music genres and the geographical area
of activities. We retain the artists who are active in the six aforementioned English-
speaking countries, and the videos that are classified into the “Music” category. For
completeness, we also implement a snowball-like procedure to retrieve further artists
and their videos by following the recommendation relations from the tweeted videos.
However, this procedure only adds 2 more artists (out of the 4,435 Vevo artists in our
dataset) and 5 more videos (out of the 60,740 music videos). This is not surprising,
considering most artists would promote their works on social media platforms. One
data limitation is that artists who are not affiliated with Vevo will not appear in our
collection, such as Ed Sheeran and Christina Perry.

5https://musicbrainz.org

https://musicbrainz.org
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Figure 5.2: YouTube webpage layout for the video “Adele - Hello”, together with its rec-
ommended and relevant lists. Vevo videos are colored in blue and included in our dataset.
(Screenshot source: https://www.youtube.com/watch?v=YQHsXMglC9A)

5.2.3 The network of YouTube videos

For any YouTube video, there are two publicly accessible sources of recommendation
relations. The first is the right-hand panel of videos that YouTube displays on its
interface. We denote this as the recommended list (visualized in Figure 5.2). The second
is from the YouTube Data API6, which retrieves a list of videos that are relevant to the
query video, ranked by the relevance. We denote this as the relevant list. We retrieve
both the recommended and the relevant lists for every video in our dataset. We
construct the recommended list by simulating a browser to access the video webpage
and scraping the list on the right-hand panel. We retrieve the first 20 videos from
the panel, which are the default number of videos shown to the viewers on YouTube.
Note that typically, YouTube customizes the viewers’ recommendation panel based
on their personal interests and prior interaction history. Here, we retrieve the non-
personalized recommended list by sending all requests from a non-logged in client
and by clearing the cookies before each request. We denote the networks of videos
constructed using the recommended and the relevant lists as the recommended network
and the relevant network, respectively.

From Sep 1, 2018 to Nov 2, 2018, we crawled both the recommended and the
relevant lists for each of the 60,740 Vevo videos on a daily basis. The crawling jobs
were distributed across 20 virtual machines, and took about 2 hours to finish. In
this way, we obtain successive snapshots for both the recommended and the relevant
networks over 9 weeks.

6https://developers.google.com/youtube/v3/docs/search/list

https://www.youtube.com/watch?v=YQHsXMglC9A
https://developers.google.com/youtube/v3/docs/search/list
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An illustrative example. Figure 5.2 illustrates the YouTube webpage layout for the
video “Hello” by Adele, together with its recommended and relevant lists. Videos
belonging to the Vevo artists are colored in blue (e.g., Adele and The Cranberries),
while others are colored in grey (e.g., Ed Sheeran and Christina Perry). Visibly, not
all videos on the recommended and relevant lists belong to the Vevo artists (e.g., “Ed
Sheeran - Perfect”). Notice that for Music videos, a platform-generated playlist is
always shown at the second position of the recommended list (here, “Mix - Adele -
Hello”), effectively capping the size of this list at 19. The length of the relevant list of-
ten exceeds 100. We observe that not all relevant videos appear in the recommended
list (e.g., “The Cranberries - Zombie”), nor all recommended videos originate from
the relevant list (e.g., “Adele - Skyfall”). Also, the relative positions of two videos
can appear flipped between the two lists (e.g., “Ed Sheeran - Perfect” and “Christina
Perry - A Thousand Years”).
Display probabilities from the relevant to the recommended list. We study the
relation between the positions of videos on the relevant and on the recommended
lists. We construct four bins based on the video position on the recommended list
(position 1, position 2-5, position 6-10, and position 11-15). Figure 5.3(a) shows as
stacked bars the probability that a video ends up in each of the bins, as a function
of its position on the relevant list. The total height of the stacked bars gives the
overall probability that a video originating from the relevant list appears at the top
15 positions on the recommended list. We observe videos that appear at an upper
position on the relevant list are more likely to appear on the recommended list, and
at an upper position. For example, the video at position 1 on the relevant list has 0.34
probability to appear at the first position and 0.84 probability to appear at the top
15 positions on the recommended list. The probability decays for videos that appear
at lower positions. A relevant video appearing in position 41 to 50 has less than
0.05 probability to appear on the recommended list. We compute the probabilities
of appearance between each pair of positions in the relevant and the recommended
lists – denoted as display probabilities – using the 9-week dynamic network snapshots.

In Figure 5.3(b), we show the plot of the probability that a video at a given po-
sition on the recommended list originates from the relevant list. We observe videos
that appear at an upper position on the recommended list are more likely to origi-
nate from the upper position of relevant list. The other notable observation is that the
overall recall for recommended videos are high at over 0.8, meaning for any video
on the recommended list, we are likely to see it on the relevant list.
YouTube video network density. Airoldi et al. [2016] used the first 25 videos on
the relevant list to construct the relevant network, which had an average degree of
3.2. By comparison, our Vevo video network is much denser at the same cutoff, with
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Figure 5.3: (a) Display probabilities of videos from the position x of the relevant list appear
at different positions of the recommended list. (b) Probabilities of videos from the position x
of the recommended list originate from different positions of the relevant list. (a) and (b) are
similar but with the relevant and recommended lists along the x-axis and y-axis swapped.

an average degree of 10. One could expect that the relevant network becomes even
denser when videos at lower position are included; however, the display probabilities
also need to be considered. In this chapter and unless otherwise specified, we use the
first 15 positions on the relevant list (0.35 ≤ Pdisplay ≤ 0.84) to construct the relevant
network. We denote this threshold as the cutoff and we study the impact of different
cutoff values on the network structure in Section 5.3.3. Measurements with other
cutoff values yield similar results and thus are omitted.
Discussion on the recommended and relevant lists. The notions of recommended
and relevant lists have been previously adopted in the field of recommender sys-
tems [Herlocker et al., 2004]. The relevant list is usually hidden from the user-
interface and ranked according to the semantic relevance between the query and
the items. In contrast, the recommended list reflects the final recommendations in
the user interface, i.e., displaying on the right-hand panel of the video webpage.
On YouTube, the recommended list is a top-K sample from the concatenation of the
relevant list, user demographics, watch history, search history, and spatial-temporal
information [Covington et al., 2016]. All features, apart from the relevant list, are
user-, time- and location-dependent. Hence, the displayed recommended list of the
same video can be very different for two viewers, regardless of their logged-in state,
location or viewing time. On the other hand, the relevant list is consistent for all
requests, from any client during any period of time. We also observe the relevant
list changes less frequently than the recommended list, which suggests it is more
robust to the update of YouTube recommender systems. For these reasons, we use
the relevant list to construct and measure YouTube video network.
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Figure 5.4: (a) The indegree distribution of the Vevo network for four snapshots. The x-axis
is the (log) indegree, and the y-axis is the (log) CCDF. On average, 33% of all videos have
no incoming links at the cutoff of 15. Best fitted power-law model is x−1.02. (b) The average
daily view counts distribution of Vevo network for the same four snapshots. The x-axis shows
average daily view count percentiles, and the y-axis shows the raw number of view counts
in log scale. Both (a) and (b) show that the macroscopic structure is temporally consistent.
(c) The number of Vevo videos uploaded each year, broken down by genre.

5.3 Macroscopic measures

We first compute several basic statistics such as indegree distribution, view count dis-
tribution, and Vevo videos uploading trend (Section 5.3.1). Next, we study the con-
nection between the network structure and video popularity (Section 5.3.2). Lastly,
we use the bow-tie structure to characterize the Vevo network and we discuss the
impact of different cutoff values (Section 5.3.3).

5.3.1 Basic statistics

Over-represented medium-size indegree videos. Here we study the indegree dis-
tribution of the Vevo network. Note that the outdegree of all nodes is bounded by
the cutoff value on the relevant list and therefore not presented. We remove all links
pointing to non-Vevo videos, resulting in an average of 363,965 edges each day, and
an average degree of 6. Note that the average degree of 10 mentioned in Section 5.2
is obtained with a cutoff of 25, whereas here we study the relevant network con-
structed with a cutoff of 15, since the display probability of videos below position
15 appearing on recommended list is less than 0.32. Figure 5.4(a) shows the com-
plementary cumulative density function (CCDF) of the indegree distribution for four
different snapshots of the network, taken 15 days apart. We notice that the indegree
distribution does not resemble a straight line in the log-log plot, meaning it is not
power-law, unlike for other online networks, e.g., the World Wide Web [Broder et al.,
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2000; Meusel et al., 2014], the network of interaction in online communities [Zhang
et al., 2007], and the follower/following network on social media [Kwak et al., 2010].
The medium-sized indegree videos are over represented than that in the best fitted
power-law model (α = 2.02, fitted by powerlaw package [Alstott et al., 2014], result-
ing in x−1.02 in CCDF [Clauset et al., 2009]). This result holds for all four snapshots.
Attention is unequally allocated. Figure 5.4(b) plots the average daily views against
the view count percentile. The daily view count at median is 81, but it is 4,575
at the 90th percentile. These observations, together with a Gini coefficient of 0.946,
indicate that the attention allocation in the Vevo network is highly unequal — the top
10% most viewed videos occupy 93.1% views. We also find a moderate correlation
between view count and indegree value (details in Section 5.4).
Uploading trend by music genres. To date, our dataset is the largest digital trace
of Vevo artists on YouTube, allowing us to study the production dynamics of the
Vevo platform. Figure 5.4(c) shows the number of Vevo videos that are uploaded
each year from 2009 to 2017, broken down by their genres. We omit year 2018 as
we only observed 8 months for it (until August). There is a significantly higher
number of uploads (9,277) in 2009 as it is the year when Vevo was launched, and
when many all-time favorite songs were syndicated to the YouTube platform. Pop,
Rock, and Hip hop music are the top 3 genres, accounting for 62.85% of all uploads.
The Vevo videos upload rate is more or less constant around 7,000 since 2013. The
flattening production dynamics is somewhat surprising given the overall growth of
YouTube [youbube.com, 2017].

5.3.2 Linking network structure and popularity

Here, we investigate the connection between the relevant network structure and
video view counts. Specifically, we divide the videos in the Vevo Music Graph

dataset into four equal groups by computing the view count quartiles. Each group
contains 15,185 videos. Next, we count the number of edges that originate and end
in each pair of groups. Figure 5.5 represents the four groups together with the num-
ber of links between them. The “top 25%” group contains the top 25% most viewed
videos, while the “bottom 25%” contains the 25% least viewed videos. The width of
the arrows is scaled by the number of the edges between the videos placed in the two
groups. One can conceptualize that the edges act as conduits for the attention to flow
between different groups and their thickness indicate the probability that a random
user jumps from one group to the other. We observe that all four groups have the
most links pointing to the “top 25%” group. In fact, every group disproportionately
points towards more popular groups than towards the less popular ones. This means
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Figure 5.5: The four video groups are constructed based on view count percentiles and the
connections between them. The arrow from group “(25%, 50%]” to group “top 25%” indicates
the number of recommendation links from all videos in the second quartile to all videos in
the top quartile. All groups disproportionately point to more popular groups.

the recommendation network built by the platform is likely to take a random viewer
towards more popular videos and keep them there, therefore reinforcing the “rich
get richer” phenomenon.

5.3.3 The bow-tie structure

The bow-tie structure was first proposed by Broder et al. [2000] to visualize the struc-
ture of the whole web. It classifies the complex web graph into five components: (a)
the largest strongly connected component (LSCC) as the core; (b) the IN component
which can reach the LSCC, but not the other way around; (c) the OUT component
which can be reached from the LSCC, but not the other way around; (d) the Ten-
drils component which connect to either the IN or the OUT, bypassing the LSCC; (e)
the Disconnected components which are disconnected from the rest of the compo-
nents. The strongly connected component (SCC) can be easily computed in linear
time by using Tarjan’s algorithm [Tarjan, 1972]. For the Vevo network, we quantify
the sizes of different components in the bow-tie structure using both the number of
nodes (videos) and the amount of attention (views). Unlike the Web graph [Broder
et al., 2000], we know the amount of views garnered by each video, this allows us
to comparatively analyze the total attracted attention in each component. The bow-
tie structure is a good conceptual description, because the directed edges exist only
from the IN to the LSCC component (similarly, LSCC to OUT, and IN to OUT) but
not the other way around, indicating that the attention in the network can only flow
in a single direction from IN to LSCC (similarly, LSCC to OUT, and IN to OUT).
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Component LSCC IN OUT Tendrils Disconnected

Web ’97 [Broder et al., 2000] 27.74% 21.29% 21.21% 21.52% 8.24%
Web ’12 [Meusel et al., 2014] 51.28% 31.96% 6.05% 4.87% 5.84%

Forum [Zhang et al., 2007] 12.3% 54.9% 13.0% 17.9% 1.9%
Citation [Kim et al., 2012] 4.26% 54.93% 3.74% 24.76% 12.30%

Vevo videos 23.11% 68.54% 0.35% 2.47% 5.53%
Vevo attention 82.60% 12.74% 3.40% 1.13% 0.14%

Table 5.1: Comparison of bow-tie structure in prior studies and Vevo network.

Figure 5.6: (a) The bow-tie structure of the Vevo network, using a snapshot on Oct, 1, 2018
and a cutoff of 15 on the relevant list. (b) The bow-tie structure, with each component resized
by its corresponding view counts. The LSCC consumes the majority of attention in the Vevo
network.

Table 5.1 compares the relative sizes of each component in prior literature and in
our Vevo network. The Vevo network is quite different with respect to other previ-
ously studied online networks, e.g., the Web graph [Broder et al., 2000; Meusel et al.,
2014] and user activity network in online community [Zhang et al., 2007; Kim et al.,
2012]. It has a much larger IN component, encompassing 68.54% of all the videos.
The OUT, Tendrils, and Disconnected components are all very small, accounting for
a total of 8.35% videos. Figure 5.6(a) visualizes the bow-tie structure of the Vevo
network. Unlike other graphs, our Vevo graph is the by-product of the recommender
systems, which is subjected to the proprietary algorithm and its updating cycle. This
suggests there may exist considerable temporal variation in the composition of the
bow-tie components, see Section 5.5 for observations over time.

Figure 5.6(b) resizes each component of the Vevo bow-tie by the total view counts
in it. Visibly the roles of LSCC and IN are reversed: the LSCC now occupies 82.6%
attention (while accounting for only 23.11% of the videos), while the big IN com-
ponent (68.54% of the videos) only attract 12.74% attention. This is consistent with
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Figure 5.7: The relative size of the components in bow-tie structure, as a function of the cutoff
on the relevant list. Red dots denote the statistics at the cutoff of 15.

the observation in Section 5.3.2 that the attention is unequally allocated in the Vevo
network. Given the definition of the IN component, its 68.54% of videos contribute
attention towards the LSCC, but not the other way around (there is no link from
LSCC towards IN). As a result, the LSCC accumulates a large proportion of all atten-
tion. The OUT, Tendrils, and Disconnected components account for almost negligible
attention (4.67% of the views altogether).
Impact of different cutoff values on the bow-tie structure. The Vevo network
changes as we change the cutoff on the relevant list, as taking more edges into ac-
count densifies the network. Figure 5.7 shows how the relative size of the bow-tie
component changes with varying cutoff values. As the cutoff increases, more edges
are added to the network, especially for the videos in the Disconnected component.
Backwards links are formed between videos in the LSCC and IN, and as a result,
the LSCC absorbs parts of the IN component. Therefore, the LSCC increases, the
IN decreases, while the other three components (OUT, Tendrils, and Disconnected)
become negligible. At cutoff of 50, the Vevo network structures into 2 distinct com-
ponents: a LSCC component consisting of 77% videos and 99% attention, and an IN
component consisting of the remaining 23% videos and accounting for only 1% of
the attention.

5.4 Microscopic measures

In this section, we jointly analyze the relation between video age, indegree, and
popularity by examining overall correlation, as well as among top-ranked videos.
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Figure 5.8: Spearman’s ρ between video indegree and views, across all videos or disaggre-
gated by uploaded year.

5.4.1 The disconnect between network indegree and video view count

We measure the correlation between video indegree and view count using Spear-
man’s ρ – a measure of the strength of the association between two ranked variables,
and which takes values between -1 and +1. A positive ρ implies the ranks of the two
variables move together in the same direction. At the level of the entire dataset, we
detect a moderate correlation between video indegree and view count (Spearman’s
ρ = 0.421∗∗∗, p< 0.001). Figure 5.8 shows the Spearman’s ρ when we further break
down the videos in the Vevo Music Graph based on their uploaded year. We observe
that the strength of the correlation decreases for fresher videos. Videos uploaded in
2009 have a much stronger correlation (ρ = 0.638∗∗∗) than videos uploaded in 2018
(ρ = 0.265∗∗∗). This suggests that video age is an important confounding factor when
one tries to estimate the effects of the recommendation network. Empirically, this
may indicate the shift in what drives attention towards video consumption. Zhou
et al. [2010] have measured that the two main drivers for video views are YouTube
search and recommender. One explanation of our observation above is that as videos
get older, the effects of recommendation become more pronounced.

5.4.2 A closer look at the top videos

Table 5.2 presents the top 20 videos with highest average daily indegree (top panel)
and top 20 videos with highest average daily views (bottom panel). We observe a
modest amount of discrepancy between these two dimensions, with only 5 videos
being on both lists (shown in bold font). Most of the top-viewed videos are relatively
new to the platform – 10 out 20 are published within one year and the top 5 are
all within the past 7 months (relative to November 2018). In contrast, the videos
with high indegree are mostly songs with sustained interests, some dating back to 10
years ago, such as “The Cranberries - Zombie” and “Bon Jovi - It’s My Life”. These
two songs were respectively released in 1993 and 2000, having existed for a long
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time before being uploaded to YouTube. Currently, they still attract half a million
views everyday after nearly 20 years, ranking 3rd and 17th on the most-linked video
list, respectively. This may shed light onto why video popularity lifecycle exhibits a
multi-phase pattern [Yu et al., 2015]. Our observations do not conflict with the design
of YouTube recommender systems, which promote “reasonably recent and fresh”
content [Davidson et al., 2010; Covington et al., 2016; Beutel et al., 2018]. Fresh videos
can be recommended due to the relevance, novelty and diversity trade-offs [Konstan
and Riedl, 2012; Ziegler et al., 2005]. Instead, our observed video relations are based
on the content recommendation network [Carmi et al., 2017; Dhar et al., 2014].

Another group of interest is the videos that are highly viewed yet with low in-
degree. We find this pattern appears at the level of the artist. For instance, “Becky
G” has 3 videos on the top 20 most-viewed list, ranking 2, 4, and 14. However, the
indegrees for her videos are extremely low (rank 2411, 40040, and 958 respectively).
Particularly, the video “Cuando Te Bese” attracts an average of 2.4M views every day
for 9 consecutive weeks. However, it has only one video pointing to it from the rest
of the 60,739 Vevo videos. A closer look reveals that “Becky G” is an American singer
who often releases Spanish songs. The above observation shows that her videos are
either recommended from non-English and/or non-Vevo videos, e.g., the Spanish
songs community, or that recommendation network is not the main traffic driver for
her videos.
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Video title Artist Age Indegree -rank Views -rank

Girls Like You Maroon 5 155 870 1 7,167,077 1
Rolling in the Deep Adele 2,894 835 2 703,495 42

Zombie The Cranberries 3,426 769 3 580,928 66
Something Just Like This Chainsmokers 618 732 4 1,840,077 6

Counting Stars OneRepublic 1,981 714 5 1,632,001 9
Uptown Funks Mark Ronson 1,444 587 6 1,724,938 7

Here Without You 3 Doors Down 3,315 541 7 401,989 114
Someone Like You Adele 2,591 514 8 954,981 26

Mr. Brightside The Killers 3,426 509 9 197,313 255
The Pretender Foo Fighters 3,317 480 10 266,610 182

I Want It That Way Backstreet Boys 3,296 464 11 368,859 131
Unforgettable French Montana 587 463 12 682,396 44

Dusk Till Dawn ZAYN 421 452 13 1,011,255 20
Starboy The Weeknd 765 450 14 519,343 77

Hello Adele 1,106 447 15 518,429 78
Love The Way You Lie Eminem 3,011 433 16 729,344 37

It’s My Life Bon Jovi 3,425 426 17 470,175 91
Cups Anna Kendrick 2,030 419 18 140,614 386

Say You Won’t Let Go James Arthur 784 417 19 774,130 32
Pumped up Kicks Foster The People 2,827 408 20 420,350 107

Girls Like You Maroon 5 155 870 1 7,167,077 1
Sin Pijama Becky G 196 28 2,411 3,988,681 2

Taste Tyga 170 242 81 2,542,673 3
Cuando Te Bese Becky G 92 0 40,040 2,373,613 4

Rise Jonas Blue 140 40 1,603 1,937,467 5
Something Just Like This Chainsmokers 618 732 4 1,840,077 6

Uptown Funks Mark Ronson 1,444 587 6 1,724,938 7
No Tears Left to Cry Ariana Grande 196 84 597 1,634,916 8

Counting Stars OneRepublic 1,981 714 5 1,632,001 9
Thunder Imagine Dragons 548 72 764 1,474,712 10
One Kiss Calvin Harris 184 23 2,973 1,230,173 11

Natural Imagine Dragons 70 8 7,747 1,186,965 12
Believer Imagine Dragons 605 60 998 1,174,431 13
Mayores Becky G 476 62 958 1,173,191 14

What’s Up 4 Non Blondes 2,809 355 36 1,128,159 15
Sugar Maroon 5 1,388 349 37 1,116,300 16

God’s Plan Drake 258 227 102 1,093,048 17
Sicko Mode Travis Scott 91 64 913 1,076,694 18

Whatever It Takes Imagine Dragons 386 118 347 1,016,394 19
Dusk Till Dawn ZAYN 421 452 13 1,011,255 20

Table 5.2: Top 20 most-linked (top panel) and top 20 most-viewed videos (bottom panel).
Both the indegree and the view counts are the average of daily values across 9 weeks. The
age (in days) is calculated till Nov 2, 2018. Only 5 videos appear in both charts (boldfaced).
Most high indegree videos are songs with sustained interests, whereas most highly viewed
videos are recently uploaded.
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Figure 5.9: Temporal evolution of the bow-tie structure over 63 days.

5.5 Temporal patterns

Here, we study the dynamics of the Vevo network over 9 weeks, namely the appear-
ance and disappearance of recommendation links between videos. We show that
pairs of videos can have either ephemeral link or frequent link between them.
Macroscopic dynamics. Figure 5.4(a) and (b) show that both the indegree distribu-
tion and the view count distribution are temporally consistent. However, when we
plot the size variation of the different components in the bow-tie structure, we ob-
tain a more nuanced story. Figure 5.9 shows that the size of the LSCC ranges from
11.49% to 30.13%, while IN component from 60.37% to 77.9% over 9 weeks. Simi-
larly, the percentage of total views in the LSCC ranges from 80.46% to 90.36%, while
IN component from 9.11% to 18.07%. Given that the same set of videos is tracked
throughout the observation period and no new video is added, the above observa-
tions imply a significant turnover in the recommendation links between videos. For
example, the appearance of a link will allow a node to transition from the IN to the
LSCC component; the disappearance of the same link would make it drop back into
IN component.
Incoming ego-network dynamics. We study the link turnover using the incoming
ego-network for each video. Ego network consists of an individual focal node and
the edges pointed towards it. We only consider incoming edges, as the number of
outgoing edges is capped by the relevant list cutoff (here the cutoff is 15). For each
video, we first extract the days with at least 20 incoming links. Then for each day
t, we compute the indegree change ratio between day t and day t + 1 by dividing
the indegree delta (positive or negative) by the value in day t. We obtain a number
between -1 and 1, where -1 means that the video loses all of its incoming edges,
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Figure 5.10: (a) Daily indegree change rate for videos that have at least 20 in-links. (b) Link
frequency of video-to-video pairs. 434K (25.2%) links appear only once while 54K (3.1%)
links appear every day of our 9-week observation windows.

and a value of 1 signifies that the video doubles the number of incoming edges.
Figure 5.10(a) shows the indegree change ratio summarized as quantiles, broken
down by the value of indegree. We highlight the 10th, 25th, median, 75th, and 90th
percentile for the videos with an indegree of 100. 25% videos with an indegree of 100
will gain at least 8 in-links on the next day while another 25% lose at least 11 in-links.
The median is around zero, meaning that there are as many videos that gain links as
these that lose links. Overall, this suggests that videos have very dynamic incoming
ego-networks, with a non-trivial number of edges prone to appear and disappear
from one day to another.
Ephemeral links and frequent links. Given the rate at which links appear and dis-
appear, here we ask the question if there exist videos that are frequently connected.
For each pair of connected videos, we count the number of times that a link appears
between them over the 63 daily snapshots. Figure 5.10(b) plots the link frequency
(taking values between 1 and 63) on the x-axis and the number of video-to-video
pairs with that link frequency on the y-axis. We find that many links are ephemeral
– they appear several times, scattering in the 63 days time window. We count that
434K (25.2%) video-to-video links only appear once. On the other hand, there are
links that appear in every snapshot — we count 54K (3.1%) such links. Ephemeral
links may contribute to bursty popularity dynamics of YouTube videos, and to the
generally perceived unpredictability in complex social systems [Martin et al., 2016;
Rizoiu et al., 2017b, 2018]. Frequent links may hold the answer to understanding and
predicting the attention flow in a network of content.
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5.6 Estimating attention flow in recommendation network

The goal of this section is to estimate how well can the view counts of a video v
at day t (denoted by yv[t]) be predicted, given (1) the view series of v in the past
w days, yv[t − w], . . . yv[t − 1]; (2) the view series, yu[t − w], . . . yu[t], for the set of
videos {u|(u→ v) ∈ G} pointing to v.

To this end, we first define and extract a persistent network that contains links ap-
pearing throughout all the snapshots (Section 5.6.1). Next, we detail the setup of pre-
dicting video popularity with recommendation network information (Section 5.6.3).
We analyze the prediction results and provide an analysis on the strength of each
link (Section 5.6.5). Finally, we introduce a new metric – estimated network contri-
bution ratio. We use it to identify the types of content that benefit most from being
recommended in the network (Section 5.6.5).

5.6.1 Constructing a network with persistent links

In order to reliably estimate the effects of the recommendation network on the view-
ing behaviors, we apply two filters: (a) target videos should have at least 100 daily
views on average; (b) the average daily views of the source videos should be at least
1% of those of the target videos as such videos cannot substantially influence their
far more popular neighbors. One can adjust the filtering criteria – a lower thresh-
old will attribute more variances to the less popular videos while a higher threshold
focuses on the flows between more popular videos. In the resulting network, we fur-
ther remove the ephemeral links that appear sporadically over time and correct for the
missing links that appear frequently, but with scattered gaps in between their appear-
ances. We assume that the missing links are likely to exist in the scattered gaps, and
we use a majority smoothing method to find them (detailed next). Links appearing
in all the 63 daily snapshots and the corrected missing links, both dubbed persistent
links, make up the persistent network.
Finding persistent links. We use a moving window of length 7, same as the weekly
seasonality, to extract the persistent structure of the Vevo network over the 63-day
observation window. A link from video u to video v, (u → v), is maintained on day
t if (u → v) appears in a majority (≥ 4) of the days in time window [t − 3, t + 3].
Likewise, if a link is missing on the current day t but it appears in the majority of
surrounding 7-day window, we consider it is a missing link and add it back to the
network. When t− 3 is earlier than the first day of data collection, or t + 3 later than
the last day, we still apply the majority rule on the available days. The resulting graph
has 52,758 directed links, pointing from 28,657 source videos to 13,710 target videos.
Among them, 2,696 links are reciprocal, meaning two videos mutually recommend
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Figure 5.11: (a) The probability of forming a persistent link (y-axis) as a function of the
probability of forming a link (x-axis). (b) Fraction of statistically correlated links in four
groups at significance level of 0.05. The numbers in the brackets indicate the number of links
in each group. (c) The numbers above the shaded bar indicate the fraction of links between
videos from the same artist (top) or with the same genre (bottom). The numbers above the
solid bar indicate the fraction of links connecting videos with the same artist/genre and
whose popularity dynamics are statistically correlated at significance level of 0.05.

each other. We find significant homophily in the persistent network: 33,908 (64.3%)
links have both the source and the target videos belonging to the same Vevo artist,
and 44,154 (83.7%) links are between videos of the same music genre.
Validating persistent links via simulation. We illustrate the probability of persistent
links by simulating a simple link presence/absence model. We assume a link is
independently presented on each day with probability pl ∈ [0, 1], and absent with
probability 1− pl . We first simulate the link formulation for 63 times, then apply our
7-day majority smoothing to determine if it is persistent. We repeat the simulation
for 100,000 times, and compute the probability of a link being persistent, denoted by
ξ. In Figure 5.11(a), we plot the obtained ξ against varying pl . For pl = 0.5 the edge
is never persistent (ξ = 0), whereas for pl = 0.9 the edge is very likely to be persistent
(ξ = 0.92). From the simulation results, we can see that our 7-day majority smoothing
rule favors links that appear much more frequent than chance, and suppresses links
that appear lower or closer to chance.
Videos connected by persistent links have correlated popularity dynamics. We
use Pearson’s r to measure the correlation between the popularity dynamics of two
videos connected by a persistent link. It is known that the cross-correlation of time
series data is affected by the within-series dependence. Therefore, we deseasonalize,
detrend, and normalize the view count series by following the benchmark steps in the
M4 forecasting competition [Competition, 2018]. This is to ensure that the residual
time series data is stationary and to avoid spurious correlations. We compute the
Pearson’s r on the obtained residual data, and we perform a paired correlation test
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which we consider statistically significant for p < 0.05.
Figure 5.11(b) shows the fraction of links for which the correlation test is statis-

tically significant over four groups of links. The persistent− group contains all the
52,758 persistent links we identified but excluding the 2,696 pairs of reciprocal links
— resulting in 47,366 persistent yet non-reciprocal links. The ephemeral group con-
sists of all links which have been deemed as non-persistent after applying the 7-day
majority smoothing. The random group is constructed by randomly selecting pairs
of unconnected videos and pretending that they have a link. All groups are filtered
based on the same two criteria mentioned before. There are a total of 694,617 links
in the ephemeral group and we sample 700,000 links in the random group. We find
that 75.4% of the reciprocal links connect videos with statistically correlated popu-
larity series. We include both positive and negative correlations as two user attention
series may cooperate or compete with each other [Zarezade et al., 2017]. Combining
the reciprocal and persistent− groups, 26,460 (50.2%) links in our persistent network
have correlated dynamics. This is much higher than the percentage for ephemeral
links (40.9%) and that for unconnected random video pairs (22.1%).

We further examine the content similarity in the persistent links by grouping
links that connect videos from the same artist or with the same music genre (de-
scribed in Figure 5.4(c)). Figure 5.11(c) top shows that most reciprocal links (93.1%)
connect videos from the same artist, while 71.1% of them have statistically correlated
popularity dynamics. The percentages are slightly lower for the persistent− group
(61% from the same artist, and 32.6% with correlated popularity) and it drops even
lower for ephemeral group (28.2% and 12.2%, respectively). The situation is slightly
different when we study the links that connect videos of the same genre, as shown
in Figure 5.11(c) bottom. We find that more than 80% of the links connect videos
of the same genre, irrespective of whether they are sporadically or persistently con-
nected. The percentages of statistically correlated links with the same genre follow
the same trend as those from the same artist, i.e., highest for reciprocal (65%), fol-
lowed by persistent− (39.8%), ephemeral (33.6%) and lowest for random (6.6%). The
above observations indicate that not all persistent links have the same effect on video
popularity, and motivate us to build a prediction model for each of the links.

5.6.2 Problem statement

One important observation is that viewing dynamics exhibit a 7-day seasonality [Huang
et al., 2018; Cheng et al., 2008]. In our temporal hold-out setting, we use the first 8
weeks (2018-09-01 to 2018-10-26) to train the model and we predict the daily view
counts in the last week (2018-10-27 to 2018-11-02). This chronological split ensures
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that the training data temporally precedes the testing data. If at any point we are
required to use the day t + 1 to predict the day t + 2 (when both t + 1 and t + 2 are
in the testing period), we use the predicted value ŷ[t + 1] instead of observed value
y[t + 1].

5.6.3 Experimental setup

Evaluation metric. The predicting performance is quantified using the symmetric
mean absolute percentage error (SMAPE). SMAPE is an alternative to the mean ab-
solute percentage error (MAPE) that can handle the case when the true value or the
predicted value is zero. It is a scale-independent metric and suitable for our task in
which the volume of views for different videos vary considerably. Formally, SMAPE
can be defined as

SMAPE(v) =
200
T

T

∑
t=1

|yv[t]− ŷv[t]|
|yv[t]|+ |ŷv[t]| or SMAPE(t) =

200
|G| ∑

v∈G

|yv[t]− ŷv[t]|
|yv[t]|+ |ŷv[t]|

(5.1)
where yv[t] is the true value for video v on day t, ŷv[t] is the predicted value, T is
maximal forecast horizon, and G is the persistent network. SMAPE(v) averages the
forecast errors over different horizons for an individual video v, while SMAPE(t)
averages over different videos for a certain forecast horizon t. The overall SMAPE
for each model is computed by taking the arithmetic mean of SMAPEs over different
horizons and over all videos. SMAPE ranges from 0 to 200, while 0 indicates perfect
prediction and 200 the largest error, when one of the true or the predicted values is
0. When the true and the predicted are both 0, we define SMAPE to be 0.

5.6.4 Methods

Baseline models. We use a few off-the-shelf time series forecasting methods from
naive forecast to recurrent neural network. The baseline models are estimated on a
per-video basis.

• Naive: The forecast at all future times is the last known observation.

ŷv[t] = yv[T∗] (5.2)

where T∗ is the last day in the training phase.

• Seasonal naive (SN): The forecast is the corresponding observation in the last sea-
sonal cycle. This method often works well for seasonal data. We observe that many
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videos in the Vevo Music Graph dataset exhibit a 7-day seasonality. Therefore we
set the periodicity length m∗ to be 7.

ŷv[t] = yv[t−m∗] (5.3)

• Autogressive (AR): AR is one of the most commonly used model in time series
forecasting. An AR model of order p describes the relation between each of the
past p days and current day, formally defined as:

ŷv[t] =
p

∑
τ=1

αv,τyv[t− τ] (5.4)

We choose the order p to be 7. αv,τ represents the relation between current day and
τ days before.

• Recurrent neural network (RNN): RNN is a deep learning architecture that models
temporal sequences. We implement RNN with long short-term memory (LSTM)
units. LSTM-based approaches have been competitive in time series forecast tasks,
mainly in a sequence-to-sequence (seq2seq) setup, see [Kuznetsov and Mariet,
2019] for detailed discussions.

Networked popularity model. Built on top of the AR model, we model the network
effects by assigning a weight βu,v to each link (u→ v) existing in the persistent graph
G, which modulates the inbound traffic received via that link, defined as:

ŷv[t] =
p

∑
τ=1

αv,τyv[t− τ] + ∑
(u,v)∈G

βu,vyu[t] (5.5)

βu,v can be explained as the probability that a generic user clicks on video v from
video u, therefore, we impose the constraint 0 ≤ βu,v ≤ 1. We refer to this model as
ARNet.

One way to interpret the ARNet is to conceptualize a YouTube watching session
as a sequence of video clicking. We therefore categorize views on YouTube into
two classes: initial views and subsequent views. The initial views start the clicking
sequences. Some possible entry points include homepage feed, search results, or
YouTube URLs on other social media. The subsequent views model the behaviors
of users clicking by following the recommendation links. The session ends when
the user navigates back to YouTube homepage, or quits the browser. Although in the
dataset we cannot differentiate initial views from subsequent views, we consider that
initial views are driven by the latent interest of users, modelled as autoregression of
the past p days; in contrast, subsequent views are directed by the recommendation
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network, modelled as contribution from its incoming neighbours {u|(u → v) ∈ G}
and mediated by estimated link strength βu,v.

We use the statsmodels.tsa package for the AR model, keras package for the
RNN, and build a customized optimization task with constrained L-BFGS for the
ARNet. We use the SMAPE as objective function in both RNN and ARNet.

5.6.5 Results and analysis

Figure 5.12(a) summarizes the prediction errors achieved by the five methods defined
in Section 5.6.3. The Naive model alone is a weak predictor, however accounting for
the seasonal effects (SN model) yields a significant error decrease. It is worth notic-
ing that the AR model yields similar performance as the advanced RNN model —
due to the known result that future popularity of online videos correlates with their
past popularity [Pinto et al., 2013]. We observe that using recommendation network
information further improves the prediction performance: the ARNet model achieves
a 9.66% relative error reduction compared to the RNN model7. This prediction task
shows that one can better predict the view series for a video if the list of videos
pointing to it is known. Next we study the prediction performance with respect to
the forecast horizon, i.e., how many days in advance do we predict. We average the
SMAPEs over all videos against predictions for a given forecast horizon t, computed
as SMAPE(t) in Equation (5.1). Figure 5.12(b) shows a nuanced story: the prediction
performances decrease for all models as the forecast horizon extends. Nevertheless,
the ARNet model consistently outperforms other baselines across all forecast hori-
zons, especially for larger horizons.

We posit two factors in preventing the models from obtaining even better results.
Firstly, it is well known that the attention dynamics tend to be bursty when items
are first uploaded [Rizoiu and Xie, 2017; Cheng et al., 2016; Martin et al., 2016],
and the interest dissipates with time [Figueiredo et al., 2016]. Given that 56,845
(93.6%) videos in our dataset have been uploaded for more than one year and 9,277
(15.3%) videos for almost ten years, most of the videos have passed the phases of
the initial attention burst. As a result, a large part of popularity variation comes
from the weekly seasonality, rendering the simple seasonal naive model particularly
competitive when compared to the more advanced RNN method. The second is data
sparsity when we build the models on a per-video basis. RNN works best when it
has ample volumes of data to train. However, we use a sliding 7-day windows to
predict the views in the next 7 days as suggested in [Kuznetsov and Mariet, 2019],

7In a follow-up study from our lab, Tran et al. [2021] have showed a further performance improve-
ment by using a multi-head attention model.
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Figure 5.12: Summary of prediction results, SMAPE: lower is better. (a) Boxplots aggregate
the prediction performances over the 13,710 videos in the test set. The dotted green line and
the values show the mean SMAPE. (b) SMAPE for different forecast horizons (in days). (c)
The distribution of estimated link strength βu,v (y-axis) against the ratio of views of source
video to that of target video (x-axis, in log scale). It has a bi-modal shape.

therefore our data size is limiting the effectively training of the RNN model.
In our ARNet model, the estimated link strength βu,v can be used to quantify the

influence from a video to its neighbours. In Figure 5.12(c), we plot the distribution
of βu,v against the ratio of views of source video to that of target video. We split
the x-axis into 40 equally wide bins in log scale. Within each bin, we compute the
values at each percentile, and then connect the same percentile across all bins. The
median line is highlighted in black. The lighter the color shades are, the further the
corresponding percentiles are away from the median. We observe the distribution
has a bi-modal shape with the first mode in 0.01 and second in 0.40 (for the median),
meaning users are more likely to click a much more popular video (100 times more
popular), or a moderate more popular video (2.5 times). In contrast, the estimated
link strength towards a less popular video is very low. This observation, together
with the measurement that videos disproportionately point to more popular videos
(Section 5.3.2), further reinforces the “rich get richer” phenomenon.
The impacts of network on video popularity prediction.

From the ARNet model, we derive a metric called the estimated network contri-
bution ratio ηv, which is defined as

ηv =
∑T

t=1 ∑(u,v)∈G βu,vyu[t]

∑T
t=1 ŷv[t]

(5.6)

ηv is the fraction of estimated inbound traffic from video v’s neighbours against its
own predicted popularity. As we constrain all coefficients in Equation (5.5) to be
non-negative, ηv is bounded in [0, 1]. In our dataset, the mean ηv is 0.314. In other
words, for an average video in the Vevo Music Graph dataset, 31.4% of its views
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Figure 5.13: (a) SMAPE as a function of the network contribution ηv from videos with the
same artist (top) or the same genre (bottom). We use the ηv percentile as x-axis. The numbers
within the brackets indicate split values for each percentile, e.g., the right-most dots indicate
top 10% videos with the highest percent of views from similar content, having ηv larger than
0.607 for the same artist (top) or 0.615 for the same genre (bottom). (b) Boxplot of artists’
popularity percentile changes when adding the recommendation network. x-axis: popularity
percentile if removing the network; y-axis: popularity percentile change with network. The
outliers (red circles) denote the artists who gain the most popularity through the network
among their cohort. (c) A closer look of artists identified in (b). A group of Hip hop artists
and Indie artists rely more on the recommendation network to become popular.

are estimated from the recommendation network. This value is slightly higher than
the YouTube network contribution measured by Zhou et al. [2010] in 2010 (reported
below 30%). We posit two potential reasons: (1) the Vevo network is more tightly
connected than a random YouTube video network [Airoldi et al., 2016]; (2) traffic
on recommendation links may have increased since then, signifying the advances of
modern recommender systems. Furthermore, among the 31.4% networked views,
85.9% are estimated from the same artist, echoing the network homogeneity found
by Airoldi et al. [2016]. On average, the 13,710 target videos in the persistent network
attract 245.3M views every day. Our ARNet model estimates that 78.6M (32%) of
these views are contributed via the recommendation network.

Firstly, we explore the relation between prediction performance and content sim-
ilarity concerning the artist and music genre. In Figure 5.13(a), we compute ηv con-
ditioned on that (u, v) ∈ G and that u and v are from the same artist (top) or with
the same genre (bottom). We then slice the x-axis into 20 bins, 5 percentiles apart,
based on the artist/genre network contribution ratio. We compute the mean SMAPEs
for the videos in each bin. Videos that are connected solely by videos from other
artists/genres will be placed in the leftmost bin (ηv = 0). The plot shows that the
SMAPE error decreases with the increasing percentage of views from videos with
the same artist or genre.
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Secondly, we study the question that which artists are affected most if the rec-
ommender systems were to be turned off? Figure 5.13(b) shows the popularity per-
centile change at the level of artist. We first compute the network-subtracted views,
i.e., subtracting the network contribution ∑T

t=1 ∑(u,v)∈G βu,vyu[t] from the observed
views ∑T

t=1 yv[t]. We then aggregate and compute the popularity percentiles for both
observed views and network-subtracted views at the level of artist. The x-axis plots
the artists’ popularity percentiles without recommendation network, and y-axis plots
the percentile changes when turning on the network. The range of percentiles stays
constant between [0, 100%], reflecting the concept of finite attention — one video
gains popularity at the expense of others. The top outliers identify artists who gain
much more popularity than their peers with similar popularity due to the recommen-
dation network; whereas the bottom outliers represent artists who lose popularity.
There are 2,340 artists having target videos in the persistent network. We observe
that 1,378 (58.89%) artists losing a small amount of popularity (less than 5%) while
948 (40.51%) gaining. We notice there is no bottom outlier. On the contrary, the top
outliers show that the network can help some artists massively increase their relative
popularity (as high as 26%, J-Kwon (American rapper) in 4th bin).

We take a closer look at the outliers by scattering them in Figure 5.13(c). 70 artists
gain significant popularity from the recommendation network, implying a better
utilization of network effects. We retrieve the artist genres from the music database
MusicBrainz, and we notice two notable groups. One is the Indie group by matching
genre keywords “indie”, “alternative”, or “new wave”. The top 3 most popular Indie
artists are 4 Non Blondes, Hoobastank, and The Police. The other is the Hip hop
group by matching genre keywords “hip hop”, “rap”, “reggae”, or “r&b”. The top
3 most popular Hip hop artists are Mark Ronson, French Montana, and Pharrell
Williams. This finding reveals that the recommender systems can lead users to find
niche artists.

5.7 Visualizing attention flow in recommendation network

In this section, we present AttentionFlow, a new system to visualize the attention
time series of videos in the YouTube recommendation network and the dynamic
influence they have among each other. We choose the ego network as the main
interface. An ego network consists of a focal node (the ego) and its direct neighbors
(the alters). It emphasizes the changing relations and evolving influence between the
ego and alters. More broadly, AttentionFlow can be generalized to visualize web
traffic patterns, search trends, or movement of people and goods among urban hubs.

Centred around an ego video, our system progressively reveals its neighbors at
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Figure 5.14: AttentionFlow visualizes the temporal attention trend of a video and the
dynamic attention flowing over its ego network. Focusing on an ego video (g), the metadata
view (a) shows its descriptive information. The trend view (b) presents two attention series
of the ego and the hovered alter node, while the network view (c) highlights the incoming
and outgoing attention between them. Users can filter the alter nodes by choosing influence
threshold (d) and select a sorting criterion for the vertical axis (e). The time slider (f) defines
an observation window, in which the ego video (g) is always placed at the rightmost position.
In this snapshot, we observe two spikes in the attention dynamics of the music video “Rolling
in the Deep” by Adele. The first spike (P) is related to the Grammy Awards of that year, while
the second (Q) is due to the release of Adele’s new song “Hello”.

the time of their significant influences, while simultaneously presenting the temporal
pattern of each series using two visual encodings: a line chart for comparing with
other nodes and a tree ring for summarizing temporal patterns. The ego network
shares the same time axis with the line chart, where the position of an alter node
represents the time when it starts to have influence on the ego node. The main inter-
action component is a time slider that allows users to select an observation window.
As the window shifts, the ego network structure and influence flows change accord-
ingly. We also provide controllers to hide less influential edges and sort nodes based
on different criteria.

The frontend is rendered in D3.js and the backend uses the Neo4j graph database.
On each page, users can access the visualization of an entity by searching for its name
(e.g. the video name or the artist name), or by clicking on the corresponding node in
the influence network of another entity. Figure 5.14 presents the main visualization
layout of the video network page, which includes three components: a metadata
view, a trend view, and a network view.
The metadata view Figure 5.14(a) shows the detailed attributes of an ego node. For
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example, video title, embedded snippet, creation time and genres are presented for a
given music video. Below the description panel, two controllers can be used to alter
the network layout. The influence slider (Figure 5.14d) is used to filter out alter nodes
with influence less than a chosen threshold, defaulted at 1%. This threshold also
determines the influencing time of the alters, which in turn decides the horizontal
positions of the alter nodes in the network view. The drop-down box (Figure 5.14e)
provides five criteria for sorting nodes along the vertical axis: force-directed (default),
total views, incoming views, outgoing views, or artist names.
The trend view Figure 5.14(b) provides a line chart to visualize the time series of
attention. A time slider (Figure 5.14f) is located on the horizontal axis to select an
observation window. The left handle changes the start time of the observation, while
the right handle changes the position of the ego. The periods outside the selected
time range are greyed out.
The network view Figure 5.14(c) visualizes the ego network structure and influence
flows. They change dynamically when users interact with the time slider and the
influence slider. Alter nodes that have influence with the ego by more than the
chosen threshold will appear in the network view. When hovering over an alter
node, the edges between the alter and the ego are highlighted, the alter’s line chart
is revealed in the trend view, and a card containing influence information pops up.
For each alter node, the horizontal position is related to the influence threshold and
the vertical position is related to the sorting criteria.

5.8 Conclusion

This work presents a large-scale study for online videos on YouTube. We collect
a new dataset that consists of 60,740 Vevo music videos, representing some of the
most popular music clips and artists. We construct the YouTube recommendation
network. We present measurements on the global component structure and temporal
persistence of links. A model that leverages the network information for predicting
video popularity is proposed, which achieves superior results over other baselines.
It also allows us to estimate the amount of attention flow over each recommendation
link. We derive a metric — estimated network contribution ratio, and we quantify
this ratio at both the entire Vevo network level and individual artist level. We also
develop a new system AttentionFlow to visualize a collection of video attention
series and the dynamic network influence. To the best of our knowledge, this is the
first work that links the video recommendation network structure to the attention
consumption for the videos in it.
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5.8.1 Discussion

Much progress has been made to algorithmically optimize or increase the attention
for individual digital item (from videos to products to connections in social net-
works), whereas the theory about attention flow among different items is still fairly
nascent. Our data includes a series of network snapshots that are constructed by
the platform’s recommender systems, and visible to both content producers and con-
sumers. We believe that the area of understanding the implications of content recom-
mendation networks has many worthy problems and fruitful applications. However,
definitions and properties of a recommendation network that is fair and transparent
to the content hosting site, producers and consumers remain as open issues.

5.8.2 Limitations and future work

Our limitations include: interpretations of importance are directly based on regres-
sion weights; some observations may not generalize to other digital items other than
the most popular music videos; the prediction does not explore all the potential deep
learning architecture and parameter tuning. Future work includes modeling atten-
tion flow that takes into account item rank on the relevant list; connecting aggregate
attention with individual click streams; and improving deep neural network mod-
els, specifically, three directions for us to exploit. Firstly, extract additional features,
such as audio-visual, artist, and network features. Secondly, measure the relations
between estimated link strength and link properties, such as the diversity and/or
novelty of the target video relative to the source video [Ziegler et al., 2005]. Lastly,
train a shared RNN model on videos with similar dynamics for increasing the vol-
ume of training data [Figueiredo et al., 2016].



Chapter 6

Conclusion

In this chapter, we first summarize the main contributions of this thesis. Next, we
discuss several possible future research directions.

6.1 Summary

The work in this thesis aims to understand the collective human behaviors in online
platforms from the perspectives of social data sampling, user engagement patterns,
and network effects of recommender systems. In particular, we focus on item-centric,
quantitative analysis instead of user-centric, qualitative approach. Broadly, this thesis
makes the following contributions:

• Quantify sampling effects of online social data. We present a comprehensive
study of the Twitter sampling effects on common measurements in Chapter 3. We
show that Twitter rate limit messages can estimate the volume of missing tweets
accurately. Tweets sampling rates also vary across different timescales. While the
hourly sampling rate is affected by the diurnal rhythm in different time zones, the
millisecond level sampling is heavily influenced by the Twitter’s implementation
choices. We find the Bernoulli process with a uniform rate approximates the em-
pirical entity distribution well. We also propose a new method to infer the true en-
tity distribution and ranking based on sampled observations. In the user-hashtag
bipartite graph and user-user retweet network, we observe that the network struc-
tures are altered with denser components more likely to be preserved. For the
diffusion models, sampling compromises their quality because tweet inter-arrival
time is significantly longer in the sampled stream, while user influence is lower.

• Measuring and predicting engagement in online content. We present the first
large-scale measurement study on how users collectively engage with online con-
tent in Chapter 4. We study a set of metrics including time and percentage of
videos being watched, and we observe that video duration is an important covari-
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ate on watching patterns. To calibrate engagement measures against video length,
we construct a new tool called engagement map to convert the watch percentage
into a new metric – relative engagement. The relative engagement metric captures
the watch percentage rank percentile among videos of similar lengths. We show
relative engagement is closely correlated with recognized notions of content qual-
ity, stable over time and predictable before videos’ upload. We extract features
such as video content, topics, and channel reputation to predict watch percentage
and relative engagement in a cold-start setup. And we can achieve coefficient of
determination R2 of 0.45 and 0.77, respectively. Lastly, we use a Hawkes process
model to forecast the video viewing and watching dynamics. The result suggests
the engagement metric (daily watch time) is more predictable than the popularity
metric (daily view count).

• Measuring and modeling content recommendation networks. We present the
first large-scale measurement study on the network effects induced by YouTube
recommender systems in Chapter 5. The study is done on a new Vevo Music

Graph dataset, which contains the content recommendation network for 60,740
music videos. We discover the popularity bias that videos are disproportionately
recommended towards more popular videos. This means the recommender system
is likely to take a random viewer to more popular videos and keep them there.
Furthermore, we use the bow-tie structure to characterize the recommendation
network. We find that its core component (23.1% of the videos) occupies most of
the attention (82.6% of the views). We also propose a new model, called ARNet,
which accounts for the network structure and can predict video popularity 9.7%
better than other baselines. More importantly, the ARNet model allows us to
quantify the latent influence between videos and artists. To our knowledge, this is
the first work that measures YouTube recommendation as a network and links to
the attention consumption for the videos in it.

• Large-scale datasets, open tools, and web demonstrations. The contributions of
our work go beyond quantitative observations. Altogether, we have released 3 new
datasets, 2 data collection tools, and 2 new web demos. They include: (1) YouTube

Engagement ’16 dataset: 5.3M videos published and tweeted between July and
August, 2016, and 3 quality video datasets. (2) Vevo Music Graph dataset: 60K
music videos with 63 daily snapshots of the video recommendation network. (3)
Complete/Sampled Retweet Cascades datasets: 2 sets of complete/sampled
retweet cascades on the topics of cyberbullying and YouTube video sharing. (4)
Twitter-intact-stream: a Python package for reconstructing the complete fil-
tered stream on Twitter. (5) YouTube-insight: a Python package for collecting
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metadata and historical data for videos on YouTube. (6) HIPie: an interactive
web interface for explaining and predicting the popularity of YouTube videos. (7)
AttentionFlow: an interactive web interface for visualizing a collection of time
series and the dynamic network influence.

6.2 Future work

We envision our long-term goal as developing principles for responsible platforms
by measuring and modeling the collective user behaviors.

• Measuring conversation quality in online platform. In Chapter 4, we use video
watching metrics as a surrogate of collective user engagement. Another impor-
tant engagement behavior is commenting. Although YouTube becomes a prevail-
ing platform, the conversation (i.e., comments) on YouTube videos is surprisingly
understudied. Recently, scholars have used YouTube comments to study hate
speech [Mathew et al., 2019], content moderation [Jiang et al., 2019], and politi-
cal polarization [Ribeiro et al., 2020]. However, we still lack the knowledge of how
users comment on YouTube videos in general.

We can narrow down the scope to the conversation around political videos, so
that both the users and videos carry clear ideologies. It is of great importance to
understand how users engage with videos and users with the same or opposite
ideologies. Specifically, one can ask questions such as how many comments on
YouTube are cross-partisan? are the cross-partisan comments more toxic? do cross-
partisan comments get more attention? which topics or media are more likely to
incur cross-partisan conversation?1

Moving beyond YouTube, we can intersect the videos with the sharing behaviors
on other social media, e.g., tweets on Twitter. Hence, an important question is to
measure the difference between the comments on YouTube and tweets on Twitter
for the same video. Overall, this question can help us understand the engagement
patterns across platforms and shed light on advertising online products.

• Auditing biases in the recommender systems. In Chapter 5, we discover the
popularity bias in the YouTube recommender systems. We can extend the study to
other biases, e.g., in politics, education, medical information, or culture trends.

For the political bias in recommender systems, there have been many anecdo-
tal reports on how YouTube radicalizes the users by recommending more extreme

1A preliminary attempt to answer these questions is available in [Wu and Resnick, 2021].
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videos [Tufekci, 2018; Lewis, 2018]. Recently, Ribeiro et al. [2020] presented a quan-
titative analysis and used YouTube comments as a proxy of video consumption. We
can bridge the gaps with prior work from two fronts: Firstly, all existing research
heavily focus on the right-wing party, but we argue that it is important to under-
stand the radicalization problem from the whole political spectrum. Secondly, to
perform a systematic study, we propose to build a simulator for mimicking real
users and auditing the recommendations given by the platform. The simulator
needs to account for different demographic features (e.g., gender, location, polit-
ical leaning) and different user behaviors (e.g., random click or always click the
first recommendation).



Appendix A

Appendix

A.1 Twitter data in ICWSM papers (2015-2019)

82 (31%) out of 265 ICWSM full papers used Twitter data from 2015 to 2019. Twitter
search API has been used 25 times, sampled stream 12 times, filtered stream 18 times,
firehose 8 times. 12 papers used multiple Twitter APIs for data collection. 7 papers
did not clearly specify their Twitter API choices.
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Id Paper APIs Notes

1 Audience analysis for competing memes in
social media

search searched keywords “Russia”, “meteor”,
“Fox”, and “Obama”

2 Making use of derived personality: The
case of social media ad targeting

filtered mention at least one term related to NYC
and one term related to traveling

3 The many shades of anonymity:
Characterizing anonymous social media

content

unspecified,
possibly
sampled

500 random publicly available tweets

4 On analyzing hashtags in Twitter sampled;
search

10M messages crawled in December 2013;
200 tweets for each hashtag in our original
dataset

5 WhichStreams: A dynamic approach for
focused data capture from large social

media

sampled;
filtered

5000 users first to use one of the keywords
“Obama”, “Romney” or “#USElections”

6 Characterizing silent users in social media
communities

filtered all tweets of 140,851 Singapore-based users
and 126,047 Indonesia-based users

7 Predicting user engagement on Twitter
with real-world events

firehose nearly 2.7 billion English tweets during
August of 2014

8 Geolocation prediction in Twitter using
social networks: A critical analysis and

review of current practice

sampled 10% sampled stream

9 Characterizing information diets of social
media users

sampled 500 randomly selected tweets from Twitter’s
1% random sample

10 Degeneracy-based real-time sub-event
detection in Twitter stream

unspecified,
possibly
filtered

several football matches that took place
during the 2014 FIFA World Cup in Brazil,
between June, 12nd and July, 13rd 2014

11 CREDBANK: A large-scale social media
corpus with associated credibility

annotations

sampled 1% random sample

12 Understanding musical diversity via
online social media

search collected U.S. Twitter users who share their
Last.fm accounts, then we collected all
publicly available tweets

13 Smelly maps: The digital life of urban
smellscapes

unspecified collected 5.3M tweets during year 2010 and
from October 2013 to February 2014

14 Project recommendation using
heterogeneous traits in crowdfunding

search retrieving tweets containing URLs that begin
with http://kck.st

15 Don’t let me be #misunderstood:
Linguistically motivated algorithm for

predicting the popularity of textual memes

sampled approximately 15% of the Twitter stream in
six month period

16 SEEFT: Planned social event discovery and
attribute extraction by fusing Twitter and

web content

unspecified,
possibly
search

querying Twitter API with 3 event types,
namely concerts, conferences, and festivals

17 A bayesian graphical model to discover
latent events from Twitter

sampled 1% sampled stream and 10% sampled stream

18 Patterns in interactive tagging networks sample;
search

randomly sampled 1 million seed users from
sample streams on December 2014; following
network starting from the same 1 million
seed users

19 Hierarchical estimation framework of
multi-label classifying: A case of tweets

classifying into real life aspects

search collected 2,390,553 tweets posted from April
15, 2012 to August 14, 2012, each of which
has “Kyoto” as the Japanese location
information

20 The lifecyle of a Youtube video: Phases,
content and popularity

filtered tweets containing keyword “youtube” OR
(“youtu” AND “be”)

Table A.1: Year 2015. 20 out of 64 papers used Twitter data. search API: 4; sampled stream:
5; filtered stream: 3; firehose: 1; unspecified: 4; multiple APIs: 3.

http://kck.st
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Id Paper APIs Notes

1 Are you charlie or ahmed? Cultural
pluralism in charlie hebdo response on

Twitter

search #JeSuisCharlie, #JeSuisAhmed, and
#CharlieHebdo – from 2015-01-07 to
2015-01-28

2 When a movement becomes a party:
Computational assessment of new forms

of political organization in social media

filtered extracted 373,818 retweets of tweets that (1)
were created by, (2) were retweeted by, or (3)
mentioned a user from the list

3 Journalists and Twitter: A
multidimensional quantitative description

of usage patterns

search contained 5,358 accounts of journalists and
news organizations, crawled all their
13,140,449 public tweets

4 Social media participation in an activist
movement for racial equality

filtered #ferguson, #BlueLivesMatter,
#BlackLivesMatter, #AllLivesMatter,
#Baltimore, #BaltimoreRiots,
#BaltimoreUprising, and #FreddieGray

5 Understanding communities via hashtag
engagement: A clustering based approach

firehose tweets from all English language Twitter
users in U.S. that used certain hashtag from
Jan 15 to Feb 15, 2015

6 Investigating the observability of complex
contagion in empirical social networks

filtered;
search

45 Nigerian cities with at least 100K
population within a radius from 25 to 40
miles; collected tweets from the timelines of
selected users

7 Dynamic data capture from social media
streams: A contextual bandit approach

sampled;
filtered

leverage sampled stream to discover
unknown users; filtered stream for realtime
data of the subset users

8 On unravelling opinions of issue
specific-silent users in social media

search asked some Twitter users to provide their
screen names for crawling

9 Distinguishing between topical and
non-topical information diffusion

mechanisms in social media

search a dataset that nearly contains all public
tweets produced by users until 2009-09 and a
snapshot of social graph crawled in 2009-09

10 TweetGrep: Weakly supervised joint
retrieval and sentiment analysis of topical

tweets

search the queries are issued to the Twitter Search
Web Interface via a proxy that we developed

11 What the language you tweet says about
your occupation

search download users’ 3,000 most recent tweets

12 TiDeH: Time-dependent hawkes process
for predicting retweet dynamics

firehose SEISMIC dataset by Zhao et al. 2015

13 Emotions, demographics and sociability in
Twitter interactions

search collect tweets from an area that included Los
Angeles, then collect all (timeline) tweets
from subset users

14 Analyzing personality through social
media profile picture choice

search we have collected up to 3,200 most recent
tweets for each user

15 Cross social media recommendation unspecified,
possibly
sampled

corpora were sampled between 2012-09-17
and 2012-09-23

16 Understanding anti-vaccination attitudes
in social media

firehose snowball (firehose) from a selected 1000
Twitter users

17 Twitter’s glass ceiling: The effect of
perceived gender on online visibility

sampled 10% sampled stream

18 Mining pro-ISIS radicalisation signals from
social media users

search Twitter user timeline of 154K users

19 Predictability of popularity: Gaps between
prediction and understanding

sampled URLs tweeted by 737k users for three weeks
of 2010

20 Theme-relevant truth discovery on Twitter:
An estimation theoretic approach

search collected through Twitter search API using
query terms and specified geographic
regions related to the events

21 #PrayForDad: Learning the semantics
behind why social media users disclose

health information

filtered collect tweets in English and published in the
contiguous United States during a
four-month window in 2014

22 Your age is no secret: Inferring
microbloggers’ ages via content and

interaction analysis

filtered record all the tweets which contain one of the
keywords “happy yth birthday” with y
ranging from 14 to 70

23 EigenTransitions with hypothesis testing:
The anatomy of urban mobility

filtered collected geo-tagged Tweets generated
within the area covering NYC and Pittsburgh
from 2013-07-15 to 2014-11-09

Table A.2: Year 2016. 23 out of 52 papers used Twitter data. search API: 10; sampled stream:
2; filtered stream: 5; firehose: 3; unspecified: 1; multiple APIs: 2.
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Id Paper APIs Notes

1 Who makes trends? Understanding
demographic biases in crowdsourced

recommendations

sampled;
search

1% random sample; queried search API
every 5 minutes and collected all topics
which became trending in US

2 #NotOkay: Understanding gender-based
violence in social media

sampled;
filtered

1% random sample; collect tweets that
contain the indicated hashtags from October
26th to November 26th, 2016

3 Online popularity under promotion: Viral
potential, forecasting, and the economics

of time

filtered tweets containing keyword “youtube” OR
(“youtu” AND “be”)

4 Examining the alternative media
ecosystem through the production of

alternative narratives of mass shooting
events on Twitter

filtered tracked “shooter, shooting, gunman,
gunmen, gunshot, gunshots, shooters, gun
shot, gun shots, shootings” between January
1 and October 5, 2016

5 State of the geotags: Motivations and
recent changes

filtered selected all coordinate-geotagged tweets
within 0.2 degrees latitude and longitude
from Pittsburgh

6 Online human-bot interactions: Detection,
estimation, and characterization

search collected the most recent tweets produced by
those accounts

7 Identifying effective signals to predict
deleted and suspended accounts on

Twitter across languages

sampled;
search

1% random sample; batches of 100 unique
users were queried against the public Twitter
API

8 Adaptive spammer detection with sparse
group modeling

search crawled a Twitter dataset from July 2012 to
September 2012 via the Twitter Search API

9 Wearing many (social) hats: How different
are your different social network personae?

search 76% of About.me users in our dataset have
linked their profiles to their alternate account
in Twitter

Table A.3: Year 2017. 9 out of 50 papers used Twitter data. search API: 3; filtered stream: 3;
multiple APIs: 3.
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Id Paper APIs Notes

1 Peer to peer hate: Hate speech instigators
and their targets

sampled;
search

1% random sample; we use search API to
fetch tweet traces of users

2 Characterizing audience engagement and
assessing its impact on social media

disclosures of mental illnesses

search obtain the list of individuals who have
retweeted each tweet from the disclosers
during this period of analysis

3 Facebook versus Twitter: Cross-platform
differences in self-disclosure and trait

prediction

search we collected participants’ social media posts

4 Can you verifi this? Studying uncertainty
and decision-making about

misinformation using visual analytics

filtered collected 103,248 tweets posted by these 178
accounts along with account metadata from
May 23, 2017 to June 6, 2017

5 Using longitudinal social media analysis to
understand the effects of early college

alcohol use

firehose extract 639k tweets that match these
keywords in August-December 2010 in our
organization’s archive of the Twitter firehose

6 Modeling popularity in asynchronous
social media streams with recurrent neural

networks

filtered;
firehose

tweets containing keyword “youtube” OR
(“youtu” AND “be”); SEISMIC dataset by
Zhao et al. 2015

7 The effect of extremist violence on hateful
speech online

sampled 10% random sample

8 You are your metadata: Identification and
obfuscation of social media users using

metadata information

sampled random sample of the tweets posted between
October 2015 and January 2016

9 #DebateNight: The role and influence of
socialbots on Twitter during the first 2016

U.S. presidential debate

firehose Twitter discussions that occurred during the
1st 2016 U.S presidential debate between
Hillary Clinton and Donald Trump

10 Ecosystem or echo-system? Exploring
content sharing across alternative media

domains

filtered tracked various keyword terms related to the
Syrian conflict including geographic terms of
affected areas

11 COUPLENET: Paying attention to couples
with coupled attention for relationship

recommendation

filtered collected tweets with emojis contains the
keyword “heart” in its description

12 Beyond views: Measuring and predicting
engagement in online videos

filtered tweets containing keyword “youtube” OR
(“youtu” AND “be”)

13 Understanding web archiving services and
their (mis)use on social media

sampled 1% random sample

Table A.4: Year 2018. 13 out of 48 papers used Twitter data. search API: 2; sampled stream:
3; filtered stream: 4; firehose: 2; multiple APIs: 2.
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Id Paper APIs Notes

1 Linguistic cues to deception: Identifying
political trolls on social media

firehose a list of 2,752 Russian troll accounts, then
collected all of the trolls’ discussions

2 Tweeting MPs: Digital engagement
between citizens and members of

parliament in the UK

search we fetched all the users (?4.28 Million) who
follow MPs and also the users that MPs
followed (869K)

3 View, like, comment, post: Analyzing user
engagement by topic at 4 levels across 5

social media platforms for 53 news
organizations

filtered collecting all posts from a news organization

4 A large-scale study of ISIS social media
strategy: Community size, collective

influence, and behavioral impact

firehose a large dataset of 9.3 billion tweets
representing all tweets generated in the
Arabic language in 2015 through full private
access to the Twitter firehose

5 Who should be the captain this week?
Leveraging inferred diversity-enhanced

crowd wisdom for a fantasy premier
league captain prediction

unspecified collected their soccer related tweets by
scraping Twitter user timelines (for a total
4,299,738 tweets)

6 Multimodal social media analysis for gang
violence prevention

search we scraped all obtainable tweets from this
list of 200 users in February 2017

7 Hot streaks on social media search we obtained all tweets, followers, and
retweeters of all tweets using the Twitter
REST API

8 Understanding and measuring
psychological stress using social media

search 601 active users who completed the survey

9 Studying cultural differences in emoji
usage across the east and the west

sampled 10% random sample

10 What Twitter profile and postedImages
reveal about depression and anxiety

search downloaded the 3200 most recent user tweets
for each user, leading to a data set of
5,547,510 tweets, out of which 700,630 posts
contained images and 1 profile image each
across 3498 users

11 Polarized, together: Comparing partisan
support for Trump’s tweets using survey

and platform-based measures

sampled;
search

collecting a large sample of Twitter users
(approximately 406M) who sent one or more
tweets that appeared in the Twitter Decahose
from Jan 2014 to Aug 2016; select from this
set the approximately 322M accounts that
were still active in Mar 2017

12 Race, ethnicity and national origin-based
discrimination in social media and hate

crimes across 100 U.S. cities

sampled 1% sample of Twitter’s public stream from
January 1st, 2011 to December 31st, 2016

13 A social media study on the effects of
psychiatric medication use

sampled;
filtered

public English posts mentioning these drugs
between January 01, 2015 and December 31,
2016

14 SENPAI: Supporting exploratory text
analysis through semantic&syntactic

pattern inspection

filtered gathered a dataset of Twitter messages from
103 professional journalists and bloggers
who work in the field of American Politics

15 Empirical analysis of the relation between
community structure and cascading

retweet diffusion

search we used the Search API and collected
Japanese tweets using the query q=RT,
lang=ja

16 Measuring the importance of
user-generated content to search engines

unspecified a row of three cards with one tweet each.
Google obtains the tweets either from
Twitter’s search (a SearchTweetCarousel) or a
single user (a UserTweetCarousel)

17 Detecting journalism in the age of social
media:Three experiments in classifying

journalists on Twitter

filtered tracking a set of event-related keywords and
hashtags

Table A.5: Year 2019. 17 out of 51 papers used Twitter data. search API: 6; sampled stream:
2; filtered stream: 3; firehose: 2; unspecified: 2; multiple APIs: 2.
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Gonçalves, B.; Perra, N.; and Vespignani, A., 2011. Modeling users’ activity on
Twitter networks: Validation of Dunbar’s number. PloS one, (2011). (cited on page
9)
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